Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

Long Nguyen

Miembro desde 2022

Liga de Oro

7005 puntos
Desarrolla una cultura de SRE de Google Earned mar 30, 2024 EDT
Procesamiento de datos sin servidores con Dataflow: Desarrolla canalizaciones Earned nov 13, 2022 EST
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned sep 23, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned sep 20, 2022 EDT
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned sep 16, 2022 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned sep 8, 2022 EDT
Preparar datos para paneles de Looker e informes Earned sep 4, 2022 EDT
Applying Machine Learning to Your Data with Google Cloud - Español Earned ago 26, 2022 EDT
Achieving Advanced Insights with BigQuery - Español Earned ago 25, 2022 EDT
Creating New BigQuery Datasets and Visualizing Insights - Español Earned ago 13, 2022 EDT
Exploring and Preparing Your Data with BigQuery - Español Earned ago 11, 2022 EDT
Developing Data Models with LookML Earned ago 5, 2022 EDT
Analyzing and Visualizing Data in Looker Earned ago 3, 2022 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned jul 31, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned jul 26, 2022 EDT

En muchas organizaciones de TI, los incentivos no se alinean con los desarrolladores, que buscan agilidad, y los operadores, que se enfocan en la estabilidad. La ingeniería de confiabilidad de sitios (SRE) es el enfoque que usa Google para alinear los incentivos entre los equipos de desarrollo y operaciones, y brindar asistencia en la producción de servicios fundamentales. Adoptar las prácticas técnicas y culturales de la SRE puede ayudar a mejorar la colaboración entre las empresas y sus departamentos de TI. En este curso se presentan las prácticas clave de la SRE de Google y la función importante que tienen los líderes empresariales y de TI en el éxito de la adopción organizacional de este enfoque.

Más información

En esta segunda parte de la serie de cursos sobre Dataflow, analizaremos en profundidad el desarrollo de canalizaciones con el SDK de Beam. Comenzaremos con un repaso de los conceptos de Apache Beam. A continuación, analizaremos el procesamiento de datos de transmisión con ventanas, marcas de agua y activadores. Luego, revisaremos las opciones de fuentes y receptores en sus canalizaciones, los esquemas para expresar datos estructurados y cómo realizar transformaciones con estado mediante las API de State y de Timer. Después, revisaremos las prácticas recomendadas que ayudan a maximizar el rendimiento de las canalizaciones. Al final del curso, presentaremos SQL y Dataframes para representar su lógica empresarial en Beam y cómo desarrollar canalizaciones de forma iterativa con notebooks de Beam.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Obtén la insignia de habilidad introductoria Preparar datos para paneles de Looker e informes y demuestra tus habilidades para realizar las siguientes tareas: filtrar, ordenar y reorientar datos, combinar resultados de diferentes exploraciones de Looker y usar funciones y operadores para crear informes y paneles de Looker para el análisis y la visualización de datos.

Más información

En este curso, definimos qué es el aprendizaje automático y cómo puede beneficiar a tu negocio. Verás algunas demostraciones de AA en acción y aprenderás términos clave de AA, como instancias, atributos y etiquetas. En los labs interactivos, practicarás la invocación de las APIs de AA previamente entrenadas que están disponibles y crearás tus propios modelos de aprendizaje automático con solo SQL y BigQuery ML.

Más información

El tercer curso de esta serie es Achieving Advanced Insights with BigQuery. En este curso, aumentarás tu conocimiento de SQL a medida que profundizamos en funciones avanzadas y cómo desglosar una consulta compleja en pasos más sencillos. Abordaremos la arquitectura interna de BigQuery (almacenamiento fragmentado basado en columnas) y temas avanzados de SQL, como los campos anidados y repetidos a través del uso de arrays y structs. Finalmente, profundizaremos en la optimización de tus consultas para mejorar el rendimiento y cómo puedes proteger tus datos con vistas autorizadas. Después de completar este curso, inscríbete en el curso Applying Machine Learning to your Data with Google Cloud.

Más información

Este es el segundo curso de la serie de cursos Data to Insights. Aquí, veremos cómo transferir nuevos conjuntos de datos externos a BigQuery y visualizarlos con Looker Studio. También analizaremos los conceptos intermedios de SQL, como las operaciones JOIN y UNION de varias tablas, que te permitirán analizar datos de varias fuentes. Nota: Incluso si tienes experiencia en SQL, hay aspectos específicos de BigQuery (como la gestión del almacenamiento en caché de las consultas y los comodines de tablas) que pueden ser nuevos para ti. Después de completar el curso, inscríbete en el curso Achieving Advanced Insights with BigQuery.

Más información

En este curso, veremos cuáles son los desafíos comunes a los que se enfrentan los analistas de datos y cómo resolverlos con las herramientas de macrodatos en Google Cloud. Aprenderás algunos conceptos de SQL y adquirirás conocimientos sobre el uso de BigQuery y Dataprep para analizar y transformar conjuntos de datos. Este es el primer curso de la serie From Data to Insights with Google Cloud. Después de completarlo, inscríbete en el curso Creating New BigQuery Datasets and Visualizing Insights.

Más información

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

Más información

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información