For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.
In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.
Scientists, developers, and other technologists from many different industries are taking advantage of AWS to perform big data analytics and meet the challenges of the increasing volume, variety, and velocity of digital information. AWS offers a portfolio of cloud computing services to help you manage big data by reducing costs, scaling to meet demand, and increasing the speed of innovation. In this quest, you’ll learn to work with advanced services for Big Data.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified SysOps Administrator - Associate Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
Learn how to develop applications in Microsoft Visual Studio leveraging AWS services.
AWS provides a set of on-demand storage, archive, transcoding, and streaming services for businesses that are running photo, video, and file storage applications in the cloud. In this quest, you’ll learn to work with advanced services for digital media on AWS.
In this quest, you’ll learn to work with services related to Deployment and Management, including AWS Identity and Access Management (IAM), AWS Elastic Beanstalk, AWS CloudFormation, and AWS OpsWorks.
This quest is designed to teach you how to apply AWS Identity and Access Management, in concert with several other AWS Services, to address real-world application and service security management scenarios.
Obtén una ventaja competitiva a través de DevOps. DevOps es un movimiento organizativo y cultural que tiene como objetivo aumentar la velocidad de entrega de software, mejorar la confiabilidad del servicio y crear una propiedad compartida entre las partes interesadas. En este curso, aprenderás a usar Google Cloud para mejorar la velocidad, estabilidad, disponibilidad y seguridad de tu capacidad de entrega de software. DevOps Research and Assessment se unió a Google Cloud. ¿Cómo se compara tu equipo? Completa este cuestionario de opción múltiple de cinco preguntas para saberlo.
In this Quest, you’ll learn to work with services related to Storage and Content Delivery Networks, including Amazon Simple Storage Service (S3), Amazon Elastic Block Store (EBS), and Amazon CloudFront.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified Solutions Architect – Professional Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified Solutions Architect – Associate Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
AWS offers services that provide businesses with a flexible, highly scalable, and low-cost way to deliver their websites and web applications. In this quest, you’ll learn to work with foundational services for marketing websites on AWS.
In this quest, you’ll learn to work with services related to Compute and Networking, including Amazon EC2, Amazon Elastic Load Balancing, and Amazon Virtual Private Cloud (VPC).
In this Quest, you will learn how to write functions with the AWS Lambda Service that respond to events and integrate other AWS Services. You will create applications that write records to Amazon DynamoDB, send messages with Amazon SNS, and monitor events in Amazon CloudWatch and external services. You will even write a back-end function in Lambda for creating a voice-response app for Alexa and the Amazon Echo.
The move to Google® Cloud public cloud services is underway, and requirements for cloud security are real. Palo Alto Networks® offers innovative and comprehensive protection as you adopt public cloud services. The Palo Alto Networks solutions complement the native Google Cloud security toolset, including network, host and cloud-native security delivered through APIs for comprehensive protection. In this Quest, you will get hands-on practice with the Palo Alto Networks virtual next-generation firewall running in Google Cloud. You will gain practical experience that you can apply to improve visibility and security for your applications and workloads.
For anyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Las interfaces de programación de aplicaciones de Google Cloud son el mecanismo que permite interactuar con los servicios de Google Cloud de manera programática. En esta Quest, adquirirá experiencia práctica en varias API de GCP, que aprenderá a utilizar con el Explorador de API de Google, una herramienta que le permite explorar API y ejecutar sus métodos de forma interactiva. Cuando aprenda a transferir datos entre depósitos de Cloud Storage, implementar instancias de Compute Engine, configurar clústeres de Dataproc y mucho más, el Explorador de API le mostrará qué tan útiles son las API y por qué los usuarios con experiencia en GCP las usan de forma casi exclusiva. Inscríbase para participar en esta Quest hoy mismo.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Welcome to DevZone Quest, a set of labs to deepen your understanding of the technology behind the Cloud Showcase Experiments featured in the Google Cloud Next 2019 San Francisco DevZone.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this advanced-level quest, you will get hands-on practice running many of the popular Windows services on Google Cloud. For example, you will learn how to instantiate Microsoft SQL databases, cloud tools for Powershell on Google Cloud Platform frameworks.
Cloud Healthcare API bridges the gap between care systems and applications built on Google Cloud. By supporting standards-based data formats and protocols of existing healthcare technologies, Cloud Healthcare API connects your data to advanced Google Cloud capabilities, including streaming data processing with Cloud Dataflow, scalable analytics with BigQuery, and machine learning with Cloud Machine Learning Engine. In this Quest you will use the Cloud Healthcare API to ingest and process data in the industry standard FHIR, HL7v2 and DICOM formats, train a TensorFlow model for prediction with FHIR data, and also gain practice with de-identification of datasets.
En este curso, el usuario experimentado de Google Cloud aprenderá a describir e iniciar recursos en la nube con Terraform, una herramienta de código abierto que codifica las APIs en archivos de configuración declarativos que se pueden compartir entre los miembros del equipo, tratarse como código, editarse, revisarse o cambiar de versión. En estos labs prácticos, trabajarás con plantillas de ejemplo y aprenderás a iniciar una variedad de configuraciones, desde servidores simples hasta aplicaciones con balanceo de cargas completo.
If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.
Prepárate para usar Anthos. Esta colección de labs prácticos recomendados centrada en Google Kubernetes Engine se enfoca en la seguridad a gran escala para implementar y administrar entornos de GKE para producción. En específico, abarca el control de acceso basado en roles, el endurecimiento, las herramientas de redes de VPC y la autorización binaria.
If you’re looking to take your Google Cloud application to the next level, look no further than Deployment Manager. By automating the creation of GCP resources and services, Deployment Manager lets you focus on developing rather than maintaining. In this advanced-level quest, you will get hands on practice with Deployment Manager by building custom templates, automating Python and Jinja application instances, and scaling custom networks.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en el ámbito de la tecnología, y Google Cloud desempeñó un papel decisivo para impulsar su desarrollo. Con su gran cantidad de APIs, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica al procesamiento del lenguaje en labs que te permitirán extraer entidades de un texto, realizar análisis sintácticos y de opiniones, y usar la API de Speech-to-Text para la transcripción.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Si eres un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica más allá de lo aprendido en Conceptos básicos de Google Cloud, este curso es para ti. Obtendrás experiencia práctica a través de labs que profundizan en Cloud Storage y otros servicios de aplicaciones clave, como Monitoring y Cloud Functions. Desarrollarás habilidades valiosas que se pueden aplicar a cualquier iniciativa de Google Cloud.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.
La seguridad es un cualidad indiscutible de los servicios de Google Cloud, por lo que Google Cloud desarrolló herramientas específicas para garantizar la identidad y seguridad en todos tus proyectos. En este curso introductorio, obtendrás experiencia práctica con el servicio de Identity and Access Management (IAM) de Google Cloud, que es el recurso principal para administrar cuentas de usuarios y máquinas virtuales. Obtendrás experiencia con la seguridad de la red a través del aprovisionamiento de VPC y VPN, y aprenderás qué herramientas están disponibles para la protección contra amenazas de seguridad y la pérdida de datos.
When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
Este curso introductorio es único entre las demás ofertas de cursos. Los labs se seleccionaron para brindar a los profesionales de TI experiencia práctica con los temas y servicios que aparecen en la certificación Associate Cloud Engineer de Google Cloud. Este curso se compone de labs específicos que abarcan desde IAM y redes hasta la implementación de Kubernetes Engine, y que pondrán a prueba tus conocimientos sobre Google Cloud. Ten en cuenta que, si bien realizar estos labs te permitirá aumentar tus capacidades y habilidades, te recomendamos que además consultes la guía del examen y otros recursos de preparación disponibles.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.
Los macrodatos, el aprendizaje automático y la Inteligencia Artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Por suerte, Google Cloud proporciona servicios fáciles de usar en estas áreas y, con este curso de nivel básico, puedes dar tus primeros pasos con herramientas como BigQuery, la API de Cloud Speech y Video Intelligence.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
¿Quieres compilar modelos de AA en minutos en lugar de horas utilizando únicamente SQL? BigQuery ML democratiza el aprendizaje automático, ya que permite que los analistas de datos creen, entrenen, evalúen y realicen predicciones con modelos de aprendizaje automático a través de herramientas y habilidades de SQL existentes. En esta serie de labs, experimentarás con diferentes tipos de modelos y aprenderás cuáles son las características de un buen modelo.
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
¿Desea convertir sus datos de marketing en estadísticas y compilar paneles? Reúna todos sus datos en un solo lugar para lograr un análisis a gran escala y poder compilar modelos. Aprenda a consultar sus datos y utilice BigQuery para obtener información repetible, escalable y valiosa. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
¿Quiere optimizar o compilar su almacén de datos? Aprenda las prácticas recomendadas para extraer, transformar y cargar sus datos en Google Cloud con BigQuery. En esta serie de labs interactivos, creará y optimizará su almacén de datos con una variedad de conjuntos de datos públicos de BigQuery a gran escala. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
Kubernetes es el sistema para la organización de contenedores más popular, y Google Kubernetes Engine se diseñó específicamente para admitir implementaciones de Kubernetes administradas en Google Cloud. En este curso de nivel avanzado, adquirirás experiencia práctica en la configuración de imágenes y contenedores de Docker, así como en la implementación de aplicaciones completas de Kubernetes Engine. También aprenderás las habilidades prácticas necesarias para integrar la organización de contenedores en tu propio flujo de trabajo. ¿Buscas un lab de desafío práctico para demostrar tus habilidades y validar tus conocimientos? Cuando termines este curso, completa el lab de desafío adicional que encontrarás al final del curso Implementa aplicaciones de Kubernetes en Google Cloud para recibir una insignia digital exclusiva de Google Cloud.
Esta es la segunda de dos Quests de labs prácticos que provienen de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado por O'Reilly Media, Inc. En esta segunda Quest, que abarca desde el capítulo 9 hasta el final del libro, ampliará las habilidades practicadas en la primera Quest y ejecutará trabajos completos de aprendizaje automático con herramientas de última generación y conjuntos de datos del mundo real, todo mediante el uso de las herramientas y los servicios de Google Cloud Platform.
Esta es la primera de las dos Quests de labs prácticos derivada de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, editado por O'Reilly Media, Inc. En esta primera Quest, en el capítulo 8, tiene la oportunidad de practicar todos los aspectos de la transferencia, la preparación, el procesamiento, las consultas, la exploración y la visualización de los conjuntos de datos con las herramientas y los servicios de Google Cloud Platform.
Usar potencia de procesamiento a gran escala para reconocer patrones y “leer” imágenes es una de las tecnologías fundamentales de la IA, que, por ejemplo, se usa en los vehículos autónomos y el reconocimiento facial. Google Cloud proporciona velocidad y precisión de primer nivel a través de sistemas que se pueden utilizar con solo llamar a las APIs. Con estas y muchas otras APIs, Google Cloud cuenta con herramientas para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica a procesamiento de imágenes en labs que te permitirán etiquetar imágenes, detectar rostros y puntos de referencia, y también extraer, analizar y traducir texto de las imágenes.
¿Macrodatos, aprendizaje automático y datos científicos? Parece la combinación perfecta. En esta Quest de nivel avanzado, obtendrá experiencia práctica en servicios de GCP como Big Query, Dataproc y Tensorflow, aplicándolos a casos prácticos en los que se usan conjuntos de datos científicos de la vida real. Mediante la adquisición de experiencia en tareas como el análisis de datos de terremotos y la agregación de imágenes satelitales, Scientific Data Processing lo ayudará a expandir sus habilidades en macrodatos y aprendizaje automático para que pueda solucionar problemas propios relacionados con un amplio espectro de disciplinas científicas.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
Esta Quest de nivel básico es única entre las demás ofertas de Qwiklabs. Los labs se seleccionaron para brindar a los profesionales de TI experiencia práctica en temas y servicios que aparecen en la certificación Associate Cloud Engineer de Google Cloud Certified. Desde IAM hasta herramientas de redes y la implementación de Kubernetes Engine, esta Quest se compone de labs específicos que pondrán a prueba sus conocimientos de GCP. Tenga en cuenta que, si bien realizar estos labs le permitirá aumentar sus habilidades y capacidades, le recomendamos que además consulte la guía del examen y otros recursos de preparación disponibles.
Las herramientas de redes son un tema clave de la computación en la nube. Es la tecnología subyacente de Google Cloud y conecta todos tus recursos y servicios entre sí. En este curso, se abordarán los servicios esenciales de herramientas de redes de Google Cloud y obtendrás experiencia práctica con herramientas especializadas para desarrollar redes consolidadas. Desde los pormenores de las VPC hasta la creación de balanceadores de cargas de nivel empresarial, Automatiza la implementación y administra el tráfico en una red de Google Cloud te dará la experiencia práctica necesaria para empezar a crear redes sólidas de inmediato.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.