Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Jewels Gemstone

Mitglied seit 2023

Diamond League

30215 Punkte
Ihre Organisation mit generativen KI-Agenten voranbringen Earned Sep 27, 2025 EDT
Generative KI-Apps heben Ihre Arbeit auf das nächste Level Earned Sep 24, 2025 EDT
Die vielfältigen Formen generativer KI Earned Sep 21, 2025 EDT
Generative KI: Grundlegende Konzepte Earned Sep 21, 2025 EDT
Generative KI ist mehr als nur Chatbots Earned Sep 20, 2025 EDT
Machine Learning Operations (MLOps) mit Vertex AI: Modellbewertung Earned Jun 22, 2025 EDT
Machine Learning Operations (MLOps) für generative KI Earned Jun 18, 2025 EDT
Einführung in Large Language Models Earned Jun 17, 2025 EDT
Einführung in generative KI Earned Jun 17, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Jun 16, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Jun 11, 2025 EDT
Production Machine Learning Systems Earned Jun 8, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Mai 26, 2025 EDT
Feature Engineering Earned Mai 18, 2025 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Mai 4, 2025 EDT
ML-Modelle mit BigQuery ML erstellen Earned Apr 28, 2025 EDT
Working with Notebooks in Vertex AI Earned Apr 21, 2025 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Apr 21, 2025 EDT
Einführung in KI und maschinelles Lernen in Google Cloud Earned Apr 16, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned Nov 2, 2024 EDT
Scaling with Google Cloud Operations Earned Apr 22, 2023 EDT
Modernize Infrastructure and Applications with Google Cloud Earned Apr 16, 2023 EDT
Exploring Data Transformation with Google Cloud Earned Apr 7, 2023 EDT
Digital Transformation with Google Cloud Earned Mär 30, 2023 EDT

„Ihre Organisation mit generativen KI-Agenten voranbringen“ ist der fünfte und letzte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs erfahren Sie, wie Unternehmen mit benutzerdefinierten generativen KI-Agenten spezifische geschäftliche Herausforderungen meistern können. Sie lernen, wie Sie einen einfachen Agenten für generative KI erstellen, und machen sich mit den Komponenten dieser Agenten vertraut, z. B. mit Modellen, Reasoning Loops und Tools.

Weitere Informationen

„Generative KI-Apps heben Ihre Arbeit auf das nächste Level“ ist der vierte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs werden die auf generativer KI basierenden Anwendungen von Google vorgestellt, zum Beispiel Gemini für Workspace und NotebookLM. Darin werden Konzepte wie Fundierung, Retrieval-Augmented Generation, das Erstellen effektiver Prompts und das Entwickeln automatisierter Workflows erläutert.

Weitere Informationen

„Die vielfältigen Formen generativer KI“ ist der dritte Kurs des Lernpfads „Generative AI Leader“. Generative KI verändert die Art und Weise, wie wir arbeiten und mit der Welt um uns herum interagieren. Aber wie können Sie als Führungskraft die Möglichkeiten von KI nutzen, um echte Geschäftsergebnisse zu erzielen? In diesem Kurs lernen Sie die verschiedenen Ebenen der Entwicklung von generativen KI-Lösungen, die Angebote von Google Cloud und die Faktoren kennen, die bei der Auswahl einer Lösung zu berücksichtigen sind.

Weitere Informationen

„Generative KI: Grundlegende Konzepte“ ist der zweite Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs lernen Sie die grundlegenden Konzepte der generativen KI kennen. Sie erfahren, wie sich KI, ML und generative KI unterscheiden und wie generative KI geschäftliche Herausforderungen mithilfe verschiedener Datentypen bewältigt. Außerdem erhalten Sie Einblicke in die Strategien von Google Cloud, um die Einschränkungen von Foundation Models zu überwinden, und in die wichtigsten Herausforderungen für eine verantwortungsbewusste und sichere KI-Entwicklung und ‑Bereitstellung.

Weitere Informationen

„Generative KI ist mehr als nur Chatbots“ ist der erste Kurs des Lernpfads „Generative AI Leader“ und hat keine Voraussetzungen. In diesem Kurs geht es nicht nur um die Grundlagen von Chatbots, sondern auch um das wahre Potenzial von generativer KI für Ihr Unternehmen. Sie lernen Konzepte wie Foundation Models und Prompt Engineering kennen, die für die Nutzung der Leistungsfähigkeit von generativer KI entscheidend sind. Außerdem werden wichtige Überlegungen behandelt, die Sie bei der Entwicklung einer erfolgreichen Strategie für generative KI für Ihr Unternehmen berücksichtigen sollten.

Weitere Informationen

Dieser Kurs gibt Machine-Learning-Anwendern alle grundlegenden Tools, Techniken und Best Practices zur Bewertung von generativen und prädiktiven KI-Modellen an die Hand. Die Modellbewertung ist ein wichtiger Schritt, bei dem geprüft wird, ob ML-Systeme in der Produktion zuverlässige, genaue und leistungsstarke Ergebnisse erzielen. Die Teilnehmer erwerben fundierte Kenntnisse über verschiedene Bewertungsmesswerte und -methoden und lernen, sie auf unterschiedliche Modelltypen und Aufgaben anzuwenden. Im Kurs wird schwerpunktmäßig auf die besonderen Herausforderungen generativer KI-Modelle eingegangen und es werden Strategien vorgestellt, wie sich diese effektiv bewältigen lassen. Die Teilnehmer lernen auf der Plattform Vertex AI von Google Cloud, robuste Bewertungsprozesse zur Auswahl, Optimierung und kontinuierlichen Überwachung des Modells zu implementieren.

Weitere Informationen

Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Weitere Informationen

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.

Weitere Informationen

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

Weitere Informationen