Mridul Ajaykumar
Menjadi anggota sejak 2019
Silver League
13500 poin
Menjadi anggota sejak 2019
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Dapatkan badge keahlian dengan menyelesaikan kursus Membangun Jaringan Google Cloud yang Aman yang membahas resource yang terkait dengan beberapa jaringan untuk membangun, menskalakan, dan mengamankan aplikasi Anda di Google Cloud. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Selesaikan badge keahlian pengantar Mendapatkan Insight dari Data BigQuery untuk menunjukkan keterampilan dalam hal berikut: menulis kueri SQL, membuat kueri tabel publik, memuat sampel data ke dalam BigQuery, memecahkan masalah error sintaksis umum dengan validator kueri di BigQuery, dan membuat laporan di Looker Studio dengan menghubungkannya ke data BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal.
Dapatkan badge keahlian dengan menyelesaikan kursus Mengembangkan Jaringan Google Cloud Anda yang berisi pelajaran tentang berbagai cara untuk men-deploy dan memantau aplikasi, termasuk cara: menjelajahi peran IAM dan menambahkan/menghapus akses project, membuat jaringan VPC, men-deploy dan memantau VM Compute Engine, menulis kueri SQL, men-deploy dan memantau VM di Compute Engine, serta men-deploy aplikasi menggunakan Kubernetes dengan beberapa pendekatan deployment. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Kursus pengantar ini unik dibandingkan penawaran kursus lainnya. Semua lab dalam kursus ini telah diseleksi untuk membekali profesional IT dengan praktik langsung terkait berbagai topik dan layanan yang muncul di Sertifikasi Associate Cloud Engineer yang Tersertifikasi Google Cloud. Dari IAM, networking, hingga deployment Kubernetes Engine, kursus ini terdiri atas beberapa lab khusus yang akan menguji pengetahuan Anda terkait Google Cloud. Perlu diketahui bahwa meskipun praktik dalam lab akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga meninjau panduan ujian dan referensi persiapan lainnya yang tersedia.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Jaringan Google Cloud, untuk mempelajari cara menjalankan tugas-tugas networking dasar di Google Cloud Platform, yakni membuat jaringan kustom, menambahkan aturan firewall subnet, lalu membuat VM dan menguji latensi saat VM berkomunikasi satu sama lain. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge digital yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Kubernetes adalah sistem orkestrasi container paling populer, dan Google Kubernetes Engine dirancang secara khusus untuk mendukung deployment Kubernetes terkelola di Google Cloud. Dalam kursus tingkat lanjut ini, Anda akan mendapatkan praktik langsung dalam mengonfigurasi Image Docker, container, serta men-deploy aplikasi Kubernetes Engine yang sepenuhnya lengkap dan siap produksi. Kursus ini akan mengajari Anda keterampilan praktis yang diperlukan untuk mengintegrasikan orkestrasi container ke dalam alur kerja Anda sendiri. Apakah Anda sedang mencari challenge lab interaktif untuk menunjukkan keterampilan Anda dan menguji pengetahuan yang dimiliki? Setelah menyelesaikan kursus ini, selesaikan Challenge Lab tambahan di akhir kursus Men-deploy Aplikasi Kubernetes di Google Cloud untuk menerima badge digital eksklusif Google Cloud.
AWS provides a set of on-demand storage, archive, transcoding, and streaming services for businesses that are running photo, video, and file storage applications in the cloud. In this quest, you’ll learn to work with advanced services for digital media on AWS.
AWS offers services that provide businesses with a flexible, highly scalable, and low-cost way to deliver their websites and web applications. In this quest, you’ll learn to work with foundational services for marketing websites on AWS.
Scientists, developers, and other technologists from many different industries are taking advantage of AWS to perform big data analytics and meet the challenges of the increasing volume, variety, and velocity of digital information. AWS offers a portfolio of cloud computing services to help you manage big data by reducing costs, scaling to meet demand, and increasing the speed of innovation. In this quest, you’ll learn to work with advanced services for Big Data.
Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
Quest level dasar ini berbeda dengan penawaran Qwiklabs lainnya. Semua lab yang termasuk dalam level ini telah diseleksi untuk membekali profesional IT dengan praktik langsung tentang berbagai topik dan layanan yang diujikan dalam Sertifikasi Google Cloud Certified Professional Cloud Architect . Dari IAM, hingga jaringan, dan penerapan Kubernetes Engine, quest ini tersusun atas sejumlah lab spesifik yang akan menguji pengetahuan Anda tentang GCP. Harap diketahui bahwa, meskipun praktik dengan lab ini akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga mempelajari panduan ujian serta referensi persiapan lain yang tersedia.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this advanced-level quest, you will get hands-on practice running many of the popular Windows services on Google Cloud. For example, you will learn how to instantiate Microsoft SQL databases, cloud tools for Powershell on Google Cloud Platform frameworks.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
In this quest you will use several tools available in Google Cloud to manipulate data and create a Google Map - map location details to find subway stations or a business; use geocoding and Apps Script to send an email of a map; visualize data on a customized map; and build a server-side proxy to create a map on a mobile device.
When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.
This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.
Cloud Healthcare API bridges the gap between care systems and applications built on Google Cloud. By supporting standards-based data formats and protocols of existing healthcare technologies, Cloud Healthcare API connects your data to advanced Google Cloud capabilities, including streaming data processing with Cloud Dataflow, scalable analytics with BigQuery, and machine learning with Cloud Machine Learning Engine. In this Quest you will use the Cloud Healthcare API to ingest and process data in the industry standard FHIR, HL7v2 and DICOM formats, train a TensorFlow model for prediction with FHIR data, and also gain practice with de-identification of datasets.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified SysOps Administrator - Associate Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified Solutions Architect – Associate Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
Learn how to deploy and administer databases running on Microsoft Windows Server in Amazon EC2 and Amazon RDS.
In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.
Learn how to deploy Microsoft Windows Server-based applications in the AWS cloud, including Microsoft Exchange, Dynamics CRM and SharePoint.
In this quest, you’ll learn to work with services related to Compute and Networking, including Amazon EC2, Amazon Elastic Load Balancing, and Amazon Virtual Private Cloud (VPC).
In this quest, you’ll learn to work with services related to Deployment and Management, including AWS Identity and Access Management (IAM), AWS Elastic Beanstalk, AWS CloudFormation, and AWS OpsWorks.
Learn how to develop applications in Microsoft Visual Studio leveraging AWS services.
In this Quest, you will learn how to write functions with the AWS Lambda Service that respond to events and integrate other AWS Services. You will create applications that write records to Amazon DynamoDB, send messages with Amazon SNS, and monitor events in Amazon CloudWatch and external services. You will even write a back-end function in Lambda for creating a voice-response app for Alexa and the Amazon Echo.
In this Quest, you will learn how to create Alexa skills that respond to voice commands and which can be used on the Amazon Echo, Dot, and Tap devices. You will create back-end functions in AWS Lambda, and then connect them with voice response logic using the Alexa Skills Kit. You will use both the AWS Console and the Amazon Developer Portal in these labs, the latter requiring you to have or create a no-cost, no-credit-card-required account. No hardware device is required for any lab; an Alexa voice response simulation system is provided in the Amazon Developer Portal. Templates used in these labs can be adapted and extended to create your own Alexa skills and offer them to the worldwide Alexa user community.
This quest is designed to teach you how to apply AWS Identity and Access Management, in concert with several other AWS Services, to address real-world application and service security management scenarios.
Keamanan adalah fitur layanan Google Cloud yang tidak dapat dikompromikan, dan Google Cloud telah mengembangkan alat khusus untuk memastikan keamanan dan identitas di seluruh project Anda. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan Layanan Identity and Access Management (IAM) Google Cloud, yang merupakan layanan utama untuk mengelola akun pengguna dan virtual machine. Anda akan mendapatkan pengalaman dengan keamanan jaringan dengan menyediakan VPC dan VPN, serta mempelajari alat-alat yang tersedia untuk mendapatkan perlindungan dari ancaman keamanan dan kebocoran data.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.
This quest introduces you to Asylo (Greek for safe place), a developer framework and SDK for developing applications that run in trusted execution environments (TEEs).
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.
This is the second Quest in a two-part series on Google Cloud billing and cost management essentials. This Quest is most suitable for those in a Finance and/or IT related role responsible for optimizing their organization’s cloud infrastructure. Here you'll learn several ways to control and optimize your Google Cloud costs, including setting up budgets and alerts, managing quota limits, and taking advantage of committed use discounts. In the hands-on labs, you’ll practice using various tools to control and optimize your Google Cloud costs or to influence your technology teams to apply the cost optimization best practices.
In this Quest, the experienced user of Google Cloud will learn how to describe and launch cloud resources with Terraform, an open source tool that codifies APIs into declarative configuration files that can be shared amongst team members, treated as code, edited, reviewed, and versioned. In these nine hands-on labs, you will work with example templates and understand how to launch a range of configurations, from simple servers, through full load-balanced applications.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on GCP. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.
This Quest is most suitable for those working in a technology or finance role who are responsible for managing Google Cloud costs. You’ll learn how to set up a billing account, organize resources, and manage billing access permissions. In the hands-on labs, you'll learn how to view your invoice, track your Google Cloud costs with Billing reports, analyze your billing data with BigQuery or Google Sheets, and create custom billing dashboards with Looker Studio. References made to links in the videos can be accessed in this Additional Resources document.
Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Ingin membangun model ML dalam hitungan menit, bukan jam, hanya dengan menggunakan SQL? BigQuery ML memperluas akses machine learning dengan memungkinkan analis data membuat, melatih, mengevaluasi, dan memprediksi sesuatu dengan model machine learning menggunakan alat serta keterampilan SQL yang ada. Dalam rangkaian lab ini, Anda akan bereksperimen dengan beragam jenis model dan mempelajari ciri-ciri model yang baik.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Apigee enables you to create APIs and manage them for the benefit of other developers who might need to use your software. Apigee Edge enables you to quickly expose backend services as APIs. These "API Products" offer different capabilities and levels of service, with consumption managed by Apigee. This Quest of hands-on labs gives you practice in using Apigee for API creation and management functionality when you decide to modernize an application backend.
Workspace is Google's collaborative applications platform, delivered from Google Cloud. In this introductory-level course you will get hands-on practice with Workspace’s core applications from a user perspective. Although there are many more applications and tool components to Workspace than are covered here, you will get experience with the primary apps: Gmail, Calendar, Sheets and a handful of others. Each lab can be completed in 10-15 minutes, but extra time is provided to allow self-directed free exploration of the applications.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Bukan rahasia lagi bahwa machine learning adalah salah satu bidang yang berkembang paling cepat di ranah teknologi, dan Google Cloud Platform telah berperan penting dalam memajukan pengembangannya. Dengan berbagai API, GCP memiliki alat untuk hampir semua tugas machine learning. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan machine learning sebagaimana diterapkan pada pemrosesan bahasa, melalui serangkaian lab yang akan memungkinkan Anda mengekstrak entity dari teks, melakukan analisis sentimen dan sintaksis, serta menggunakan Speech to Text API untuk melakukan transkripsi.
Jika Anda adalah developer cloud pemula yang mencari praktik langsung di luar Google Cloud Essentials, kursus ini cocok untuk Anda. Anda akan mendapatkan pengalaman praktis melalui lab yang mendalami Cloud Storage dan layanan aplikasi utama lainnya seperti Monitoring dan Cloud Functions. Anda akan mengembangkan keahlian berharga yang dapat diterapkan untuk inisiatif Google Cloud apa pun.
Learn how the Google Cloud ecosystem can help you build secure, scalable and intelligent cloud native applications and experience seamless integration between Google services and APIs to create intelligent apps. Dive deep into key solutions to common use cases and gain hands-on experience with App Engine, Stackdriver and the Places API, plus score points and compete with other players in today's game.
Welcome, gamers! Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become one of the Cloud Heroes! Today's game is all about Big Data and Machine Learning. You will compete to see who can finish the game with the most points. Speed is important, and so is accuracy! Start taking the game labs to score points. Earn the most points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with the lab to get the maximum points. You can take each lab up to 5 times.
Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become one of the Cloud Heroes! Today's game is all about Core Infrastructure. You will compete to see who can finish the game with the most points. Speed is important, and so is accuracy! Earn the most points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
Dalam quest level pendahuluan ini, Anda akan mendapatkan praktik langsung dengan aneka fitur dan layanan dasar Google Cloud Platform. Dasar-Dasar GCP adalah Quest pertama yang direkomendasikan bagi peserta kursus Google Cloud—Anda dapat memulai dengan pengetahuan yang minim atau tanpa pengetahuan sama sekali tentang cloud, dan selesai dengan pengalaman praktis yang dapat diterapkan pada project GCP pertama Anda. Mulai dari menulis perintah Cloud Shell dan menerapkan mesin virtual pertama Anda, hingga menjalankan aplikasi di Kubernetes Engine atau dengan load balancing, Dasar-Dasar GCP merupakan pengenalan terbaik pada fitur-fitur dasar platform cloud. Setiap lab disertai video berdurasi 1 menit yang akan memandu Anda memahami berbagai konsep penting.