Usar a capacidade de computação em grande escala para reconhecer padrões e "ler" imagens é uma das tecnologias fundamentais de IA, desde carros com condução automática até reconhecimento facial. O Google Cloud Platform oferece velocidade e precisão de nível internacional, com sistemas que podem ser usados ao chamar APIs. Com eles e várias outras APIs, o GCP tem praticamente uma ferramenta para cada job de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning em processamento de imagens com laboratórios que permitem rotular imagens, detectar rostos e pontos de referência, extrair, analisar e traduzir texto de imagens.
Não é novidade que o machine learning é um dos campos que mais cresce na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning ao processamento de linguagem em laboratórios que permitem extrair entidades de textos e realizar análises sintáticas e de sentimento, além de usar a API Speech-to-Text para transcrição.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
O curso Descobrindo a IA Generativa - Vertex AI é uma coleção de laboratórios sobre como usar a IA generativa no Google Cloud. Nos laboratórios, você vai aprender como usar os modelos da família da API Vertex AI PaLM, incluindo text-bison, chat-bison, e textembedding-gecko. Você também vai aprender sobre design de comandos, práticas recomendadas, e como isso pode ser usado para gerar ideias, classificar, extrair e resumir textos e muito mais. Saiba também como ajustar um modelo de fundação com um treinamento personalizado no Vertex AI e implantá-lo em um endpoint do Vertex AI.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Ganhe o selo de habilidade avançado ao concluir o curso Usar APIs de machine learning no Google Cloud. Nele, você aprende os recursos básicos das seguintes tecnologias de machine learning e IA: API Cloud Vision, API Cloud Translation e API Cloud Natural Language. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Não é novidade que o machine learning é um dos campos que mais crescem na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta Quest de nível avançado, você terá experiência prática com as APIs de machine learning em laboratórios como estes: "Como implementar um bot de bate-papo com IA usando o Dialogflow" e "Detectar rótulos, rostos e pontos de referência em imagens com a API Cloud Vision".
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.
Quer criar modelos de ML em minutos em vez de horas usando apenas SQL? O BigQuery ML democratiza o machine learning ao permitir que analistas de dados criem, treinem, avaliem e façam previsões usando habilidades e ferramentas de SQL que eles já têm. Nesta série de laboratórios, você vai fazer alguns testes e saber quais são as características de um bom modelo.
Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.