Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Henock Mamo

Date d'abonnement : 2022

Ligue de Diamant

29607 points
Créer des agents d'IA générative avec Vertex AI et Flutter Earned août 7, 2025 EDT
Améliorer les capacités du modèle Gemini Earned juil. 21, 2025 EDT
Présentation de la sécurité dans le monde de l'IA Earned juil. 18, 2025 EDT
IA responsable pour les développeurs : confidentialité et sécurité Earned juil. 17, 2025 EDT
IA responsable pour les développeurs : interprétabilité et transparence Earned juin 12, 2025 EDT
IA responsable pour les développeurs : équité et biais Earned juin 11, 2025 EDT
Créer et déployer des solutions de machine learning sur Vertex Earned juin 11, 2025 EDT
Machine Learning Operations (MLOps) avec Vertex AI : évaluation des modèles Earned mai 17, 2025 EDT
IA responsable : appliquer les principes concernant l'IA avec Google Cloud Earned mai 16, 2025 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned mai 14, 2025 EDT
Implémenter la recherche vectorielle multimodale avec BigQuery Earned mai 13, 2025 EDT
Travailler avec des modèles Gemini dans BigQuery Earned mai 12, 2025 EDT
Créer des embeddings et utiliser la recherche vectorielle et le RAG avec BigQuery Earned mai 7, 2025 EDT
Booster la productivité avec Gemini dans BigQuery Earned mai 7, 2025 EDT
Conception de requêtes dans Vertex AI Earned mai 5, 2025 EDT
Introduction à Vertex AI Studio Earned août 20, 2023 EDT
Architecture encodeur/décodeur Earned juin 17, 2023 EDT
Generative AI Fundamentals - Français Earned juin 17, 2023 EDT
Introduction à l'IA responsable Earned juin 17, 2023 EDT
Présentation des grands modèles de langage Earned juin 17, 2023 EDT
Modèles Transformer et modèle BERT Earned juin 14, 2023 EDT
Présentation de l'IA générative Earned juin 14, 2023 EDT
Mécanisme d'attention Earned juin 12, 2023 EDT
Créer des modèles de création de légendes pour les images Earned juin 12, 2023 EDT
Introduction à la génération d'images Earned juin 12, 2023 EDT

Dans ce cours, vous allez apprendre à développer une application à l'aide de Flutter, le kit d'interface utilisateur portable de Google, et à y intégrer Gemini, la famille de modèles d'IA générative de Google. Vous allez également utiliser Vertex AI Agent Builder, la plate-forme de Google pour développer et gérer des agents d'IA et des applications.

En savoir plus

Terminez le cours intermédiaire Améliorer les capacités du modèle Gemini pour recevoir un badge démontrant vos compétences dans les domaines suivants : utiliser les fonctionnalités avancées des modèles Gemini, y compris la génération et l'exécution de code, l'ancrage, la génération de contenu contrôlée et la création de données synthétiques, afin de développer des applications d'IA plus puissantes et sophistiquées. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

L'intelligence artificielle (IA) offre des possibilités de transformation, mais elle présente également de nouveaux enjeux de sécurité. Ce cours apporte aux responsables de la sécurité et de la protection des données des stratégies pour gérer l'IA de façon sécurisée dans leurs organisations. Découvrez un framework pour identifier et atténuer de manière proactive les risques spécifiques à l'IA, protéger les données sensibles, assurer la conformité et construire une infrastructure d'IA résiliente. Choisissez des cas d'utilisation dans quatre secteurs d'activité différents pour savoir comment ces stratégies s'appliquent dans des scénarios réels.

En savoir plus

Ce cours présente des points importants au sujet de la confidentialité et de la sécurité de l'IA. Vous découvrirez des méthodes pratiques et des outils pour mettre en place des pratiques recommandées de confidentialité et de sécurité de l'IA à l'aide de produits Google Cloud et d'outils Open Source.

En savoir plus

Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.

En savoir plus

Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.

En savoir plus

Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.

En savoir plus

Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Terminez le cours intermédiaire Implémenter la recherche vectorielle multimodale avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : utiliser Gemini dans BigQuery pour générer et déboguer des requêtes SQL, effectuer une analyse des sentiments, résumer du texte et identifier des mots clés, générer des embeddings, créer un pipeline de RAG (génération augmentée par récupération), et implémenter la recherche vectorielle multimodale. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence numérique que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours montre comment utiliser des modèles d'IA/de ML pour des tâches d'IA générative dans BigQuery. À travers un cas d'utilisation pratique faisant intervenir la gestion de la relation client, vous étudierez le workflow de résolution d'un problème métier à l'aide de modèles Gemini. Pour faciliter la compréhension, le cours fournit également des instructions détaillées tout au long du codage des solutions à l'aide de requêtes SQL et de Notebooks Python.

En savoir plus

Ce cours présente une solution de génération augmentée par récupération (RAG) dans BigQuery permettant de réduire les hallucinations de l'IA. Il décrit un workflow RAG qui couvre la création d'embeddings, la recherche dans un espace vectoriel et la génération de réponses améliorées. Il explique aussi les raisons conceptuelles derrière ces étapes et leur implémentation pratique avec BigQuery. À la fin du cours, les participants seront à même de créer un pipeline de RAG à l'aide de BigQuery et de modèles d'IA générative tels que Gemini, ainsi que des modèles d'embeddings pour traiter leurs propres cas d'hallucinations de l'IA.

En savoir plus

Ce cours présente Gemini dans BigQuery, une suite de fonctionnalités basées sur l'IA conçue pour faciliter le workflow "des données à l'IA". Ces fonctionnalités incluent l'exploration et la préparation des données, la génération et le dépannage de code, ainsi que la découverte et la visualisation du workflow. Au moyen d'explications conceptuelles, d'un cas d'utilisation concret et d'ateliers pratiques, le cours explique aux professionnels des données comment booster leur productivité et accélérer le pipeline de développement.

En savoir plus

Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus