Este é o último dos cinco cursos do Certificado Google Cloud Data Analytics. Neste curso, você vai combinar e aplicar o conhecimento e as habilidades básicas dos cursos anteriores em um projeto final focado em todo o ciclo de vida dos dados. Você também vai praticar o uso de ferramentas baseadas na nuvem para adquirir, armazenar, processar, analisar, visualizar e comunicar insights de dados de maneira eficaz. No final do curso, você terá concluído um projeto demonstrando sua proficiência em estruturar dados de várias fontes de maneira eficiente, oferecer soluções para outras partes interessadas e visualizar insights de dados usando um software com base na nuvem. Você também vai atualizar seu currículo e praticar técnicas que ajudam a preparar você para se candidatar e passar por entrevistas de emprego.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
Este curso ajuda a criar um plano de estudos para o exame de certificação Professional Cloud Architect (PCA). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
Conclua o selo de habilidade intermediário Conheça a IA generativa com a API Gemini na Vertex AI para demonstrar conhecimento nas seguintes atividades: geração de texto, análise de imagens e vídeos para criação de conteúdo aprimorado e aplicação de técnicas de chamada de função na API Gemini. Saiba como aproveitar as técnicas sofisticadas do Gemini, conhecer a geração de conteúdo multimodal e ampliar os recursos dos seus projetos com tecnologia de IA.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Em muitas organizações de TI, os objetivos não estão alinhados entre desenvolvedores, que buscam por agilidade, e operadores, que focam na estabilidade. A engenharia de confiabilidade do site (SRE) é o método usado pelo Google para alinhar incentivos entre o desenvolvimento e as operações, além de prestar suporte essencial à produção. A adoção das práticas culturais e técnicas de SRE pode ajudar a melhorar a colaboração entre os departamentos comercial e de TI. Neste curso, apresentamos as principais práticas de SRE do Google e o papel importante que os líderes de TI e de negócios desempenham em uma adoção organizacional de SRE bem-sucedida.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
O Kubernetes é o sistema de orquestração de contêineres mais conhecido, e o Google Kubernetes Engine foi criado especificamente para oferecer suporte a implantações gerenciadas do Kubernetes no Google Cloud. Neste curso de nível avançado, você vai praticar a configuração de contêineres e imagens Docker e a implantação de aplicativos completos do Kubernetes Engine. Você também vai aprender as habilidades práticas necessárias para integrar a orquestração de contêineres ao próprio seu fluxo de trabalho. Está procurando um laboratório com desafios práticos para demonstrar suas habilidades e validar seu conhecimento? Quando terminar o curso, faça o laboratório extra com desafio ao fim do curso Implantar aplicativos do Kubernetes no Google Cloud para receber um selo digital exclusivo do Google Cloud.
Neste curso, o usuário experiente do Google Cloud vai aprender a descrever e lançar recursos de nuvem com o Terraform, uma ferramenta de código aberto que transforma APIs em arquivos de configuração declarativos, que podem ser compartilhados entre os membros da equipe, tratados como código, editados, revisados e versionados. Nestes laboratórios práticos, você vai trabalhar com modelos de exemplo e aprenderá a lançar uma variedade de configurações, desde servidores simples até aplicativos com balanceamento de carga completo.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.