加入 登录

在 Google Cloud 控制台中运用您的技能

Rawaha Bin Khalid

成为会员时间:2024

钻石联赛

29520 积分
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Aug 13, 2024 EDT
Recommendation Systems on Google Cloud Earned Jul 25, 2024 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Jul 24, 2024 EDT
Natural Language Processing on Google Cloud Earned Jul 24, 2024 EDT
How Google Does Machine Learning Earned Jul 17, 2024 EDT
透過 Vertex AI 建構及部署機器學習解決方案 Earned Jul 12, 2024 EDT
Launching into Machine Learning Earned Jul 11, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Jul 11, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Jul 9, 2024 EDT
基本概念:資料、機器學習和 AI Earned Apr 28, 2024 EDT
Feature Engineering Earned Apr 28, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Apr 17, 2024 EDT
負責任的 AI 技術簡介 Earned Apr 17, 2024 EDT
大型語言模型簡介 Earned Apr 17, 2024 EDT
生成式 AI 簡介 Earned Apr 17, 2024 EDT

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

大數據、機器學習和人工智慧 (AI) 是時下熱門的 電腦相關話題,但這些領域相當專業,就算想要入門 也難以取得教材或資料。幸好,Google Cloud 提供了此領域的多種服務,而且容易使用。 參加這堂入門課程,您就能踏出第一步, 開始學習運用 BigQuery、Cloud Speech API 以及 Video Intelligence 等工具。

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情