Rawaha Bin Khalid
Date d'abonnement : 2024
Ligue de Diamant
29520 points
Date d'abonnement : 2024
Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.
Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.
L'intelligence artificielle (IA) et le machine learning (ML) représentent une évolution importante de l'informatique et transforment rapidement un grand nombre de secteurs. Le cours "Innover avec l'intelligence artificielle de Google Cloud" explore comment les organisations peuvent utiliser l'IA et le ML pour repenser leurs processus métier. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.