Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Rawaha Bin Khalid

Mitglied seit 2024

Diamond League

29520 Punkte
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Aug 13, 2024 EDT
Recommendation Systems on Google Cloud Earned Jul 25, 2024 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Jul 24, 2024 EDT
Natural Language Processing on Google Cloud Earned Jul 24, 2024 EDT
How Google Does Machine Learning Earned Jul 17, 2024 EDT
ML-Lösungen mit Vertex AI erstellen und bereitstellen Earned Jul 12, 2024 EDT
Launching into Machine Learning Earned Jul 11, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Jul 11, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Jul 9, 2024 EDT
Referenz – Big Data, Machine Learning und KI Earned Apr 28, 2024 EDT
Feature Engineering Earned Apr 28, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Apr 17, 2024 EDT
Einführung in die verantwortungsbewusste Anwendung von KI Earned Apr 17, 2024 EDT
Einführung in Large Language Models Earned Apr 17, 2024 EDT
Einführung in generative KI Earned Apr 17, 2024 EDT

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Weitere Informationen

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Weitere Informationen

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Weitere Informationen

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Weitere Informationen

Big Data, Machine Learning und künstliche Intelligenz sind heutzutage sehr wichtige Themen. Diese Technologiefelder bringen jedoch sehr spezielle Anforderungen mit sich und es ist schwierig, einführende Materialien dafür zu finden. Google Cloud bietet nutzerfreundliche Dienste in diesen Bereichen an, die in diesem Kurs für Einsteiger behandelt werden. Verschaffen Sie sich Einblicke in die Nutzung von Tools wie BigQuery, der Cloud Speech API und Video Intelligence.

Weitere Informationen

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Weitere Informationen

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen