Sunil Khanna
Member since 2021
Gold League
190355 points
Member since 2021
Learn the technical aspects you need to know about Chronicle and how it can help you detect and action threats.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
Bu kursta yapay zekanın yorumlanabilirliği ve şeffaflığı kavramlarıyla ilgili temel bilgiler sunulmaktadır. Ayrıca geliştiriciler ve mühendisler için yapay zeka sistemlerinde şeffaflığın önemi ele alınmaktadır. Kurs boyunca, veri ve yapay zeka modellerinde yorumlanabilirliğin ve şeffaflığın sağlanmasına yardımcı olacak pratik yöntemleri ve araçları tanıyacaksınız.
Bu kursta, yapay zekada gizlilik ve güvenlik konuları ele alınmaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynak araçları kullanarak yapay zekayla ilgili önerilen gizlilik ve güvenlik uygulamalarını benimsemenize yardımcı olacak pratik yöntemler ile araçları tanıyacaksınız.
Bu kursta, sorumlu yapay zeka kavramı ve yapay zeka ilkeleri tanıtılmaktadır. Kurs, adalet ve önyargıyı pratik şekilde tanımlama teknikleri ile yapay zeka/makine öğrenimi uygulamalarında önyargının azaltılması konularını ele almaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynaklı araçları kullanarak sorumlu yapay zekayla ilgili en iyi uygulamaları benimsemenize yardımcı olacak pratik yöntemler ve araçları tanıyacaksınız.
This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.
Complete the intermediate Develop Serverless Apps with Firebase skill badge course to demonstrate skills in the following: architecting and building serverless web applications with Firebase, utilizing Firestore for database management, automating deployment processes using Cloud Build, and integrating Google Assistant functionality into your applications.
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
Bu kurs, MLOps ekiplerinin üretken yapay zeka modellerini dağıtırken ve yönetirken karşılaştığı zorlukların üstesinden gelmek için gereken bilgi ve araçları sağlamaktadır. Ayrıca yapay zeka ekiplerinin, MLOps süreçlerini kolaylaştırıp üretken yapay zeka projelerinde başarıya ulaşması için Vertex AI'ın nasıl yardımcı olduğunu öğrenmenizi amaçlamaktadır.
Bu kursta yapay zeka destekli arama teknolojileri, araçları ve uygulamalarını keşfedeceksiniz. Vektör yerleştirmelerinin kullanıldığı semantik aramayı, semantik ve anahtar kelime yaklaşımlarının birleştirildiği karma aramayı ve yapay zeka temsilcisini temellendirerek yapay zeka halüsinasyonlarının en aza indirildiği veriyle artırılmış üretimi (RAG) öğrenin. Akıllı arama motorunuzu oluşturmak için Vertex AI Vector Search'ü uygulamalı olarak deneyin.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Complete the intermediate Develop Gen AI Apps with Gemini and Streamlit skill badge course to demonstrate skills in text generation, applying function calls with the Python SDK and Gemini API, and deploying a Streamlit application with Cloud Run. In this course, you learn Gemini prompting, test Streamlit apps in Cloud Shell, and deploy them as Docker containers in Cloud Run.
Orta düzeydeki Çoklu Format Destekli Gemini ve Çok Formatlı RAG ile Zengin Belgeleri İnceleme beceri rozetini tamamlayarak şu konulardaki becerilerinizi kanıtlayabilirsiniz: Çok formatlı istemler kullanarak metin ve görsel formatlarındaki verilerden bilgi elde etme, video açıklaması oluşturabilme ve Gemini ile çok formatlılıktan yararlanarak videonun kapsamındaki bilgilerden çok daha fazlasına ulaşabilme; metin ve görüntü içeren dokümanların meta verilerini oluşturma, gerekli tüm metin parçalarına ulaşma ve Gemini'ın Çok Formatlı Almayla Artırılmış Üretim (RAG) mimarisini kullanarak alıntıları yazdırma Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
Complete the introductory Build Real World AI Applications with Gemini and Imagen skill badge to demonstrate skills in the following: image recognition, natural language processing, image generation using Google's powerful Gemini and Imagen models, deploying applications on the Vertex AI platform.
Earn a skill badge by completing the Get Started with Pub/Sub skill badge course, where you learn how to use Pub/Sub through the Cloud console, how Cloud Scheduler jobs can save you effort, and when Pub/Sub Lite can save you money on high-volume event ingestion.
Earn a skill badge by completing the Using the Google Cloud Speech API quest, where you learn how create a Speech-to-Text API request, transcribe audio speech to text, and transcribe speech. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.
Complete the intermediate Explore Generative AI with the Gemini API in Vertex AI skill badge to demonstrate skills in text generation, image and video analysis for enhanced content creation, and applying function calling techniques within the Gemini API. Discover how to leverage sophisticated Gemini techniques, explore multimodal content generation, and expand the capabilities of your AI-powered projects.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.
Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
Configure and Maintain CCAIP as an Admin is a course that provides end users with essential learning about the core features, functionality, reporting, and configuration information most relevant to the role. This course is most appropriate for those who perform administrative functions to support the operation of the contact center as well as analyze, troubleshoot, and configure the platform to best meet the demands of customers. While this program will review some monitoring and reporting aspects, those topics are explored in depth in the course titled, “Managing Functions and Reporting with CCAIP.”
Manage Functions and Reporting with CCAI Platform provides end-users with essential training about the core features, functionality, monitoring, reporting, and configuration information that is most relevant to the role. This course is most appropriate for those at the managerial level of the contact center who are tasked with monitoring the effectiveness, efficiency, and KPI attainment for all consumer interactions. While this program will review some aspects of settings and configuration options, the major focus is on reporting functionality in CCAI Platform.
This course teaches contact center agents about the core agent features and functionality in Contact Center AI Platform (CCAIP). CCAIP is a unified contact center platform that accelerates an organization's ability to leverage and deploy CCAI without relying on multiple technology providers. This course is most appropriate for those who handle consumer interactions via chat and call.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
Excited to follow your favorite soccer/football stars on their next quest? Use GenAIus Travel Guides to learn how to interact with chat applications, master prompt engineering, understand the importance of context in AI, and work with Generative AI. Earn an exclusive Google Cloud Generative AI Credential and showcase your new skills! No prior experience needed!
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.
This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
Take the next steps in working with the Chronicle Security Operations Platform. Build on fundamental knowledge to go deeper on cusotmization and tuning.
This course covers the basline skills needed for the Chronicle Security Operations Platform. The modules will cover specific actions and features that security engineers should become familiar with to start using the toolset.
This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.
Complete the intermediate Develop Serverless Applications on Cloud Run skill badge course to demonstrate skills in the following: integrating Cloud Run with Cloud Storage for data management, architecting resilient asynchronous systems using Cloud Run and Pub/Sub, constructing REST API gateways powered by Cloud Run, and building and deploying services on Cloud Run.
Complete the introductory Monitor and Log with Google Cloud Observability skill badge course to demonstrate skills in the following: monitoring virtual machines in Compute Engine, utilizing Cloud Monitoring for multi-project oversight, extending monitoring and logging capabilities to Cloud Functions, creating and sending custom application metrics, and configuring Cloud Monitoring alerts based on custom metrics.
Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.
Complete the intermediate Implement Cloud Security Fundamentals on Google Cloud skill badge course to demonstrate skills in the following: creating and assigning roles with Identity and Access Management (IAM); creating and managing service accounts; enabling private connectivity across virtual private cloud (VPC) networks; restricting application access using Identity-Aware Proxy; managing keys and encrypted data using Cloud Key Management Service (KMS); and creating a private Kubernetes cluster.
Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Google Cloud Ağınızı Geliştirme kursunu tamamlayarak bir beceri rozeti kazanın. IAM rollerini keşfetme ve proje erişimi ekleme/kaldırma, VPC ağları oluşturma, Compute Engine sanal makinelerini dağıtma ve izleme, SQL sorguları yazma ve çeşitli dağıtım yaklaşımlarıyla Kubernetes'i kullanarak uygulama dağıtma gibi uygulamaları dağıtıp izlemeyle ilgili birden çok yöntemi öğreneceksiniz.
Bu görevde, web sitenizin kullanılabilir ve ölçeklenebilir olmasını sağlayacak dört Google Cloud web sitesi mimarisini öğreneceksiniz. Bu görevi, görev sonundaki yarışma laboratuvarı da dahil olmak üzere tamamladığınızda, size özel bir Google Cloud dijital rozetine hak kazanırsınız. Kendinizi sınayabileceğiniz bu laboratuvar, önceden belirlenmiş bazı adımları yerine getirmenizi ister, ancak çözümlerin asgari seviyede yönlendirmeyle oluşturulmasını zorunlu kılar ve Google Cloud teknolojisiyle ilişkili yeteneklerinizi teste tabi tutar. Bu görev, Get Cooking in Cloud video serisi temel alınarak hazırlanmıştır.
Earn a skill badge by completing the Cloud Architecture: Design, Implement, and Manage to demonstrate skills in the following: deploy a publicly accessible website using Apache web servers, configure a Compute Engine VM using startup scripts, configure secure RDP using a Windows Bastion host and firewall rules, build and deploy a Docker image to a Kubernetes cluster and then update it, and create a CloudSQL instance and import a MySQL database. This skill badge is a great resource for understanding topics that will appear in the Google Cloud Certified Professional Cloud Architect certification exam.
Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.
Earn a skill badge by completing the Share Data Using Google Data Cloud skill badge course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps network engineers create, update, and maintain VPC networks. You learn how to prompt Gemini to provide specific guidance for your networking tasks, beyond what you would receive from a search engine. Using a hands-on lab, you experience how Gemini makes it easier for you to work with Google Cloud VPC networks. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
Complete the introductory Get Started with Dataplex skill badge to demonstrate skills in the following: creating Dataplex assets, creating aspect types, and applying aspects to entries in Dataplex.
Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
Complete the intermediate Mitigate Threats and Vulnerabilities with Security Command Center skill badge to demonstrate skills in the following: preventing and managing environment threats, identifying and mitigating application vulnerabilities, and responding to security anomalies.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Giriş düzeyindeki BigQuery Verilerinden Analiz Elde Etme beceri rozetini alarak şu konulardaki becerilerinizi gösterin: SQL sorguları yazma, herkese açık tabloları sorgulama, örnek verileri BigQuery'ye yükleme, BigQuery'deki sorgu doğrulayıcı ile yaygın söz dizimi sorunlarını giderme ve BigQuery verilerine bağlanarak Looker Studio'da rapor oluşturma.
Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma. Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
Güvenli Bir Google Cloud Ağı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta, Google Cloud'da uygulamalarınızı derlemek, ölçeklendirmek ve korumak için ağla ilgili birden fazla kaynak hakkında bilgi edineceksiniz.
Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta Cloud Storage, Identity and Access Management, Cloud Functions ve Pub/Sub gibi teknolojilerin temel özelliklerini kullanarak depolama odaklı bulut altyapısı oluşturma ve bu altyapıyla bağlantı kurmayı öğreneceksiniz.
Giriş düzeyindeki Compute Engine'de Yük Dengelemeyi Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: gcloud komutları yazma ve Cloud Shell kullanma, Compute Engine'de sanal makineler oluşturma ve dağıtma, ağ ve HTTP yük dengeleyicileri yapılandırma. Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlık düzeyinizin tanınması amacıyla Google Cloud tarafından verilen özel bir rozettir. Bu rozet, bilginizi etkileşimli ve uygulamalı bir ortamda uygulama becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozetini ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri ve makine öğrenimi gibi kavramlar ve Google Cloud’un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales Bu üçüncü kursta güvenli ağlar oluşturma,…
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri ve makine öğrenimi gibi kavramlar ve Google Cloud’un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales Bu ikinci kursta Google Cloud'da depol…
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri, makine öğrenimi gibi kavramlar ve Google Cloud'un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales İlk kursta bulut bilişimi, Google Cloud'u k…
With Google Calendar, you can quickly schedule meetings and events and create tasks, so you always know what’s next. Google Calendar is designed for teams, so it’s easy to share your schedule with others and create multiple calendars that you and your team can use together. In this course, you’ll learn how to create and manage Google Calendar events. You will learn how to update an existing event, delete and restore events, and search your calendar. You will understand when to apply different event types such as tasks and appointment schedules. You will explore the Google Calendar settings that are available for you to customize Google Calendar to suit your way of working. During the course you will learn how to create additional calendars, share your calendars with others, and access other calendars in your organization.
Google Drive is Google’s cloud-based file storage service. Google Drive lets you keep all your work in one place, view different file formats without the need for additional software, and access your files from any device. In this course, you will learn how to navigate your Google Drive. You will learn how to upload files and folders and how to work across file types. You will also learn how you can easily view, arrange, organize, modify, and remove files in Google Drive. Google Drive includes shared drives. You can use shared drives to store, search, and access files with a team. You will learn how to create a new shared drive, add and manage members, and manage the shared drive content. Google Workspace is synonymous with collaboration and sharing. You will explore the sharing options available to you in Google Drive, and you will learn about the various collaborator roles and permissions that can be assigned. You’ll also explore ways to ensure consistency and save time…
With Google Docs, your documents are stored in the cloud, and you can access them from any computer or device. You create and edit documents right in your web browser; no special software is required. Even better, multiple people can work at the same time, you can see people’s changes as they make them, and every change is saved automatically. In this course, you will learn how to open Google Docs, create and format a new document, and apply a template to a new document. You will learn how to enhance your documents using a table of contents, headers and footers, tables, drawings, images, and more. You will learn how to share your documents with others. We will discuss your sharing options and examine collaborator roles and permissions. You will learn how to manage versions of your documents. Google Docs allows you to work in real time with others on the same document. You will learn how to create and manage comments and action items in your documents. We will review a few of the G…
Gmail is Google’s cloud based email service that allows you to access your messages from any computer or device with just a web browser. In this course, you’ll learn how to compose, send and reply to messages. You will also explore some of the common actions that can be applied to a Gmail message, and learn how to organize your mail using Gmail labels. You will explore some common Gmail settings and features. For example, you will learn how to manage your own personal contacts and groups, customize your Gmail Inbox to suit your way of working, and create your own email signatures and templates. Google is famous for search. Gmail also includes powerful search and filtering. You will explore Gmail’s advanced search and learn how to filter messages automatically.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
Gemini for Google Workspace provides customers with access to generative AI features. This course delves into the capabilities of Gemini in Google Meet. Through video lessons, hands-on activities and practical examples, you will gain a comprehensive understanding of the Gemini features in Google Meet. You learn how to use Gemini to generate background images, improve your video quality, and translate captions. By the end of this course, you'll be equipped with the knowledge and skills to confidently utilize Gemini in Google Meet to maximize the effectiveness of your video conferences.
Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Sheets.
Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Slides.
Gemini for Google Workspace provides customers with access to generative AI features. This course delves into the capabilities of Gemini in Google Docs using video lessons, hands-on activities and practical examples. You learn how to use Gemini to generate written content based on prompts. You also explore using Gemini to edit text you’ve already written, helping you improve your overall productivity. By the end of this course, you'll be equipped with the knowledge and skills to confidently utilize Gemini in Google Docs to improve your writing.
Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Gmail.
Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this learning path, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Workspace.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps administrators provision infrastructure. You learn how to prompt Gemini to explain infrastructure, deploy GKE clusters and update existing infrastructure. Using a hands-on lab, you experience how Gemini improves the GKE deployment workflow. Duet AI was renamed to Gemini, our next-generation model.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.
In this beginner-level course, you will learn about the Data Analytics workflow on Google Cloud and the tools you can use to explore, analyze, and visualize data and share your findings with stakeholders. Using a case study along with hands-on labs, lectures, and quizzes/demos, the course will demonstrate how to go from raw datasets to clean data to impactful visualizations and dashboards. Whether you already work with data and want to learn how to be successful on Google Cloud, or you’re looking to progress in your career, this course will help you get started. Almost anyone who performs or uses data analysis in their work can benefit from this course.
Bu kursta Vertex AI Studio tanıtılmaktadır. Bu araç, üretken yapay zeka modelleriyle etkileşime geçmek, kurumsal fikirlerin prototipini oluşturmak ve bunları gerçek hayatta uygulamak için kullanılır. Gerçek hayattan kullanım alanları, etkileşimli dersler ve uygulamalı laboratuvarlar aracılığıyla, ilk istemden son ürüne uzanan yaşam döngüsünü keşfedecek ve çoklu format destekli Gemini uygulamaları, istem tasarımı, istem mühendisliği ve model ayarlama konularında Vertex AI Studio'dan nasıl yararlanabileceğinizi öğreneceksiniz. Bu kursun amacı, Vertex AI Studio'yu kullanarak projelerinizde üretken yapay zekadan yararlanabilmenizi sağlamaktır.
Bu kurs, derin öğrenmeyi kullanarak görüntülere altyazı ekleme modeli oluşturmayı öğretmektedir. Kurs sırasında görüntülere altyazı ekleme modelinin farklı bileşenlerini (ör. kodlayıcı ve kod çözücü) ve modelinizi eğitip değerlendirmeyi öğreneceksiniz. Bu kursu tamamlayan öğrenciler, kendi görüntülere altyazı ekleme modellerini oluşturabilecek ve bu modelleri görüntülere altyazı oluşturmak için kullanabilecek.
Bu kurs, dönüştürücü mimarisini ve dönüştürücülerden çift yönlü kodlayıcı temsilleri (BERT - Encoder Representations from Transformers) modelini tanıtmaktadır. Kursta, öz dikkat mekanizması gibi dönüştürücü mimarisinin ana bileşenlerini ve BERT modelini oluşturmak için dönüştürücünün nasıl kullanıldığını öğreneceksiniz. Ayrıca sınıflandırma, soru yanıtlama ve doğal dil çıkarımı gibi BERT'in kullanılabileceği çeşitli görevler hakkında da bilgi sahibi olacaksınız. Kursun tahmini süresi 45 dakikadır.
Bu kursta, kodlayıcı-kod çözücü mimarisi özet olarak anlatılmaktadır. Bu mimari; makine çevirisi, metin özetleme ve soru yanıtlama gibi "sıradan sıraya" görevlerde yaygın olarak kullanılan, güçlü bir makine öğrenimi mimarisidir. Kursta, kodlayıcı-kod çözücü mimarisinin ana bileşenlerini ve bu modellerin nasıl eğitilip sunulacağını öğreneceksiniz. Laboratuvarın adım adım açıklamalı kılavuz bölümünde ise sıfırdan şiir üretmek için TensorFlow'da kodlayıcı-kod çözücü mimarisinin basit bir uygulamasını yazacaksınız.
Bu kursta nöral ağların, giriş sırasının belirli bölümlerine odaklanmasına olanak tanıyan güçlü bir teknik olan dikkat mekanizması tanıtılmaktadır. Kursta, dikkat mekanizmasının çalışma şeklini ve makine öğrenimi, metin özetleme ve soru yanıtlama gibi çeşitli makine öğrenimi görevlerinin performansını artırmak için nasıl kullanılabileceğini öğreneceksiniz.
Bu kursta, görüntü üretme alanında gelecek vadeden bir makine öğrenimi modelleri ailesi olan "difüzyon modelleri" tanıtılmaktadır. Difüzyon modelleri fizikten, özellikle de termodinamikten ilham alır. Geçtiğimiz birkaç yıl içinde, gerek araştırma gerekse endüstri alanında difüzyon modelleri popülerlik kazandı. Google Cloud'daki son teknoloji görüntü üretme model ve araçlarının çoğu, difüzyon modelleri ile desteklenmektedir. Bu kursta, difüzyon modellerinin ardındaki teori tanıtılmakta ve bu modellerin Vertex AI'da nasıl eğitilip dağıtılacağı açıklanmaktadır.
Kurumsal yapay zeka ve makine öğreniminin kullanımı artmaya devam ettikçe, bunu sorumlu bir şekilde oluşturmanın önemi de artıyor. Sorumlu yapay zeka hakkında konuşmanın, onu uygulamaya koymaktan çok daha kolay olabilmesi burada bir zorluk oluşturmaktadır. Kuruluşunuzda sorumlu yapay zekayı nasıl işlevsel hale getireceğinizi öğrenmekle ilgileniyorsanız, bu kurs tam size göre. Bu kurs, Google Cloud'un sorumlu yapay zeka yaklaşımını nasıl uyguladığını derinlemesine inceleyerek, kendi sorumlu yapay zeka stratejinizi oluşturmanız için size kapsamlı bir çerçeve sunuyor.
Vertex AI'da istem mühendisliği, görüntü analizi ve çok modlu üretken teknikler gibi becerileri göstermek için Vertex AI'da İstem Tasarımı beceri rozetini tamamlayın. Etkili istemlerin nasıl oluşturulacağını, üretken yapay zeka çıktılarına nasıl rehberlik edileceğini ve Gemini modellerinin gerçek dünyadaki pazarlama senaryolarına nasıl uygulanacağını keşfedin. Ein Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlığınızın tanınması amacıyla Google Cloud tarafından verilen özel bir dijital rozettir ve bilginizi etkileşimli, uygulamalı bir ortamda uygulama yeteneğinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti almak için bu beceri rozeti kursunu ve son değerlendirme yarışması laboratuvarını tamamlayın. Bu aktiviteyi tamamlayın ve bir rozet kazanın! Geliştirdiğiniz becerileri herkese göstererek bulut üstüne kariyerinizi geliştirin.
Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.
Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.
Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.