The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
This course aims to upskill Google Cloud partners to perform specific tasks in rehosting applications from on-premise to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and Java applications from their on-premise machines to Google Cloud VM instances. Sample code will be used during the migration.
Selesaikan badge keahlian Mengembangkan Aplikasi Serverless di Cloud Run untuk menunjukkan keterampilan Anda dalam hal berikut: mengintegrasikan Cloud Run dengan Cloud Storage untuk pengelolaan data, membangun sistem asinkron yang tangguh menggunakan Cloud Run dan Pub/Sub, membuat gateway REST API yang didukung Cloud Run, dan membangun serta men-deploy layanan di Cloud Run. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan kepada jaringan Anda.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
Selesaikan badge keahlian tingkat menengah Menerapkan Dasar-Dasar Keamanan Cloud di Google Cloud untuk menunjukkan kemahiran dalam hal berikut: membuat dan menetapkan peran dengan Identity and Access Management (IAM); membuat dan mengelola akun layanan; memungkinkan konektivitas pribadi di seluruh jaringan virtual private cloud (VPC); membatasi akses aplikasi menggunakan Identity-Aware Proxy; mengelola kunci dan data terenkripsi dengan Cloud Key Management Service (KMS); dan membuat cluster Kubernetes pribadi. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi Serverless dengan Firebase untuk menunjukkan keterampilan dalam hal berikut ini: membuat arsitektur dan membangun aplikasi web serverless dengan Firebase, memanfaatkan pengelolaan database Firestore, mengotomatiskan proses deployment menggunakan Cloud Build, dan mengintegrasikan fungsi Asisten Google ke dalam aplikasi. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagian pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, virtual machine, dan layanan aplikasi. Anda akan mempelajari cara menggunakan Google Cloud melalui konsol dan Cloud Shell. Anda juga akan mempelajari peran arsitek cloud, pendekatan desain infrastruktur, dan konfigurasi networking virtual dengan Virtual Private Cloud (VPC), Project, Jaringan, Subnetwork, alamat IP, Rute, dan Aturan firewall.
Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Network Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
This quest of "Challenge Labs" gives the student preparing for the Google Cloud Certified Professional Cloud Architect certification hands-on practice with common business/technology solutions using Google Cloud architectures. Challenge Labs do not provide the "cookbook" steps, but require solutions to be built with minimal guidance, across many Google Cloud technologies. All labs have activity tracking, and in order to earn this badge you must score 100% in each lab. This quest is not easy and will put your Google Cloud technology skills to the test! Be aware that while practice with these labs will increase your knowledge and abilities, additional study, experience, and background in cloud architecture is recommended to prepare for this certification. Complete this quest to receive an exclusive Google Cloud digital badge.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.