完成運用 BigQuery 導入多模態向量搜尋技能徽章中階課程, 即可證明自己具備下列技能:使用 Gemini in BigQuery 生成 SQL 程式碼並偵錯、執行情緒分析、 總結文字重點並找出關鍵字、生成嵌入項目、建立檢索增強生成 (RAG) pipeline, 以及導入多模態向量搜尋。 技能徽章是 Google Cloud 獨家核發的數位徽章, 用於肯定您對 Google Cloud 產品和服務的精通程度。 獲得技能徽章代表您已通過測驗,能在互動式實作環境應用相關知識。 完成這個技能徽章課程,以及挑戰實驗室的結業評量之後, 即可取得數位徽章並與他人分享。
這堂課程會說明 BigQuery 中的檢索增強生成 (RAG) 解決方案,協助您減少 AI 幻覺。當中介紹的 RAG 工作流程包含建立嵌入項目、搜尋向量空間,以及生成更符合需求的答案。另外,這堂課程會解釋這些步驟背後的概念與原因,以及實際運用 BigQuery 實作的方法。完成課程之後,學員將學會使用 BigQuery,以及 Gemini 和嵌入模型等生成式 AI 模型,建立 RAG pipeline 來處理自己的 AI 幻覺應用實例。
本課程將示範如何在 BigQuery 運用 AI/機器學行模型,以執行生成式 AI 任務。透過涉及顧客關係管理的應用實例,您將瞭解運用 Gemini 模型解決業務問題的工作流程。為了便於理解,本課程還提供了採用 SQL 查詢和 Python 筆記本的程式設計解決方案,指導您逐步操作。
本課程會說明 Gemini in BigQuery,這是一套由 AI 輔助的功能,可協助「從資料到 AI」的工作流程。這些功能包含資料探索和準備、程式碼生成和疑難排解,以及工作流程探索和視覺化。本課程將透過概念解說、應用實例和實作實驗室,協助資料從業人員提升工作效率,並加速開發 pipeline。
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
完成「為 Looker 資訊主頁和報表準備資料」技能徽章入門課程, 即可證明您具備下列技能:可篩選、排序和 pivot 資料、合併不同的 Looker 探索結果, 還能使用函式和運算子建構 Looker 資訊主頁和報表,取得資料分析結果和圖表。 技能徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務上的精熟技能,代表您已通過測驗, 能在互動式實作環境中應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,即可取得徽章 並與他人分享。
Complete the introductory Migrate MySQL data to Cloud SQL using Database Migration Services skill badge to demonstrate skills in the following: migrating MySQL data to Cloud SQL using different job types and connectivity options available in Database Migration Service and migrating MySQL user data when running Database Migration Service jobs. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Google Cloud Fundamentals for AWS Professionals introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
完成 透過 BigQuery 建構資料倉儲 技能徽章中階課程,即可證明您具備下列技能: 彙整資料以建立新資料表、排解彙整作業問題、利用聯集附加資料、建立依日期分區的資料表, 以及在 BigQuery 使用 JSON、陣列和結構體。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
不想花費大把時間,想在幾分鐘內只靠 SQL,就建立好機器學習模型嗎?透過 BigQuery ML,資料分析師可以運用現有的 SQL 工具和技巧,建立、訓練、評估模型, 並使用模型進行預測,降低機器學習的使用門檻。在 本系列的實驗室,您會測試不同類型的模型,瞭解 優良模型應具備的條件。
Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
本入門課程有別於其他課程。 透過這些實驗室,IT 專業人員將有機會實際練習, 熟悉出現在 Google Cloud 助理雲端工程師認證中的主題和服務。本課程包含多個專門的實驗室,從 IAM、網路建立 到 Kubernetes Engine 部署作業, 可全面驗收您的 Google Cloud 知識。請注意,雖然進行這些 實驗室可提升您的技能和能力,但仍建議同時詳閱 測驗指南和其他可用的準備資源。
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
完成 從 BigQuery 資料取得深入分析結果 技能徽章入門課程,即可證明您具備下列技能: 撰寫 SQL 查詢、查詢公開資料表、將樣本資料載入 BigQuery、使用 BigQuery 的查詢驗證工具 排解常見語法錯誤,以及在 Looker Studio 中 透過連結 BigQuery 資料建立報表。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度,代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成本技能徽章課程及結業評量挑戰 實驗室,即可取得技能徽章並與他人分享。
In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.
The third course in this course series is Achieving Advanced Insights with BigQuery. Here we will build on your growing knowledge of SQL as we dive into advanced functions and how to break apart a complex query into manageable steps. We will cover the internal architecture of BigQuery (column-based sharded storage) and advanced SQL topics like nested and repeated fields through the use of Arrays and Structs. Lastly we will dive into optimizing your queries for performance and how you can secure your data through authorized views. After completing this course, enroll in the Applying Machine Learning to your Data with Google Cloud course.
完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。
This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。
只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於表彰您相當熟悉 Google Cloud 產品與服務,並已通過測驗,能在互動式實作環境中應用相關知識。只要完成這個技能徽章課程和最終評量挑戰研究室,即可取得技能徽章並與親友分享成就。
完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。