参加 ログイン

Google Cloud コンソールでスキルを試す

Allistair Elmo

メンバー加入日: 2019

ゴールドリーグ

37595 ポイント
Vertex AI におけるプロンプト設計 Earned 1月 31, 2025 EST
Google Cloud Operations を使用したスケーリング Earned 9月 26, 2024 EDT
Google Cloud で実現する信頼とセキュリティ Earned 9月 25, 2024 EDT
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 9月 23, 2024 EDT
Google Cloud の AI を活用したイノベーション Earned 9月 22, 2024 EDT
Google Cloud によるデータ トランスフォーメーションの探求 Earned 9月 21, 2024 EDT
Google Cloud によるデジタル トランスフォーメーション Earned 9月 21, 2024 EDT
Professional Data Engineer の取得に向けた準備 Earned 8月 26, 2024 EDT
Analyze Sentiment with Natural Language API Earned 8月 24, 2024 EDT
The Power of Storytelling: How to Visualize Data in the Cloud Earned 8月 24, 2024 EDT
Analyze Speech and Language with Google APIs Earned 8月 23, 2024 EDT
Perform Predictive Data Analysis in BigQuery Earned 8月 23, 2024 EDT
Build LookML Objects in Looker Earned 8月 23, 2024 EDT
Analyze Images with the Cloud Vision API Earned 8月 22, 2024 EDT
Monitor and Manage Google Cloud Resources Earned 8月 22, 2024 EDT
ベースライン: データ、ML、AI Earned 8月 21, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 8月 21, 2024 EDT
アプリケーション開発者向けの Gemini Earned 8月 20, 2024 EDT
Google Cloud 上の Gemini 1.0 Pro とアプリケーションの統合 Earned 8月 20, 2024 EDT
Data Transformation in the Cloud Earned 8月 19, 2024 EDT
Generative AI Explorer - Vertex AI Earned 8月 15, 2024 EDT
Data Management and Storage in the Cloud Earned 8月 12, 2024 EDT
Introduction to Data Analytics in Google Cloud Earned 8月 2, 2024 EDT
Put It All Together: Prepare for a Cloud Data Analyst Job Earned 7月 17, 2024 EDT
クラウド アーキテクチャ: 設計、実装、管理 Earned 9月 15, 2020 EDT
Google Cloud での ML の API の使用 Earned 9月 14, 2020 EDT
[DEPRECATED] Building Advanced Codeless Pipelines on Cloud Data Fusion Earned 9月 14, 2020 EDT
安全な Google Cloud ネットワークの構築 Earned 9月 14, 2020 EDT
Google Cloud での DevOps ワークフローの実装 Earned 9月 14, 2020 EDT
Google Cloud ネットワークの設定 Earned 9月 14, 2020 EDT
Google Cloud ネットワークの構築 Earned 9月 13, 2020 EDT
Build a Website on Google Cloud Earned 9月 13, 2020 EDT
DEPRECATED Explore Machine Learning Models with Explainable AI Earned 9月 13, 2020 EDT
Data Catalog Fundamentals Earned 9月 12, 2020 EDT
ML のための BigQuery Earned 9月 12, 2020 EDT
[DEPRECATED] Build Interactive Apps with Google Assistant Earned 9月 12, 2020 EDT
Google Cloud の ML API 用にデータを準備 Earned 9月 11, 2020 EDT
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 9月 11, 2020 EDT
BigQuery のデータから分析情報を引き出す Earned 9月 11, 2020 EDT
Google Cloud Run Serverless Workshop Earned 5月 21, 2020 EDT
DEPRECATED Application Development - Java Earned 5月 2, 2020 EDT
Intermediate ML: TensorFlow on Google Cloud Earned 5月 2, 2020 EDT
Advanced ML: ML Infrastructure Earned 5月 2, 2020 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned 5月 2, 2020 EDT
Anthos: Service Mesh Earned 5月 2, 2020 EDT
ベースライン: インフラストラクチャ Earned 5月 2, 2020 EDT
Cloud Logging Earned 5月 2, 2020 EDT
Deprecated Kubernetes Solutions Earned 5月 2, 2020 EDT
DEPRECATED Websites and Web Applications Earned 5月 2, 2020 EDT
[DEPRECATED] Deploying Applications Earned 5月 2, 2020 EDT
DEPRECATED Application Development - Python Earned 5月 2, 2020 EDT
ML 入門: 画像処理 Earned 5月 2, 2020 EDT
ML 入門: 言語処理 Earned 4月 30, 2020 EDT
クラウド エンジニアリング Earned 3月 26, 2020 EDT
DevOps の基礎 Earned 3月 11, 2020 EDT
DEPRECATED Applied Data: Blockchain Earned 3月 11, 2020 EDT
[DEPRECATED] Data Engineering Earned 3月 1, 2020 EST
DEPRECATED BigQuery Basics for Data Analysts Earned 1月 15, 2020 EST
Understand Your Google Cloud Costs Earned 1月 14, 2020 EST
[DEPRECATED] OK Google: Build Interactive Apps with Google Assistant Earned 1月 13, 2020 EST
Google Workspace の基礎 Earned 1月 12, 2020 EST
Google デベロッパー向け基礎 Earned 1月 12, 2020 EST
Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理 Earned 12月 30, 2019 EST
Google Cloud の Kubernetes Earned 12月 29, 2019 EST
Google Cloud Essentials Earned 12月 29, 2019 EST

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

組織がデータやアプリケーションをクラウドへ移行する際には、新たなセキュリティ上の課題に対処することが求められます。この「Google Cloud で実現する信頼とセキュリティ」コースでは、クラウド セキュリティの基礎、およびインフラストラクチャ セキュリティに対する Google Cloud のマルチレイヤ型アプローチが持つ価値について学ぶとともに、Google がクラウドへのお客様の信頼をどのように獲得し維持しているのかについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

AI と ML は、幅広い業種に急速な変革をもたらしているインフォメーション テクノロジーにおける重要な進化です。「Google Cloud の AI を活用したイノベーション」では、AI と ML を活用して組織でビジネス プロセスを変革する方法について学習します。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

詳細

This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.

詳細

Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.

詳細

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

詳細

Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

詳細

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

詳細

This challenge lab tests your skills and knowledge from the labs in the Monitor and Manage Google Cloud Resources quest. You should be familiar with the content of labs before attempting this lab.

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

Google Cloud 上の Gemini 1.0 Pro モデルとアプリケーションの統合に関する短いコースです。ここでは、Gemini API とその生成 AI モデルについて学習し、Gemini 1.0 Pro モデルと Gemini 1.0 Pro Vision モデルにコードからアクセスする方法を学びます。これらのモデルの機能は、アプリからのテキスト、画像、動画のプロンプトを使用してテストできます。

詳細

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細

This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.

詳細

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

詳細

This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.

詳細

クラウド アーキテクチャ: 設計、実装、管理 コースを修了して、スキルバッジを獲得しましょう。 Apache ウェブサーバーを使用した一般公開ウェブサイトのデプロイ、 起動スクリプトを使用した Compute Engine VM の構成、 Windows の踏み台インスタンスとファイアウォール ルールを使用したセキュアな RDP の構成、ビルドした Docker イメージの Kubernetes クラスタへのデプロイと更新、 CloudSQL インスタンスの作成と MySQL データベースのインポートといったスキルを実証できます。 このスキルバッジは、 Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックを理解するのに 役立つリソースです。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。

詳細

This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

Google Cloud ネットワークの設定コースを修了してスキルバッジを獲得しましょう。 このコースでは、Google Cloud Platform で基本的なネットワーキング タスクを実行する方法を学習します。具体的には、カスタム ネットワークの作成、サブネット ファイアウォール ルールの追加、VM の作成、そして VM 同士が通信する際のレイテンシのテストについて学びます。 スキルバッジは、 Google Cloud のプロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境で 知識の応用力が試されます。このスキルバッジと 最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

このクエストでは、ウェブサイトの可用性とスケーラビリティを確保するために利用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学びます。最後のチャレンジラボも含め、このクエストを修了すると、Google Cloud の限定デジタルバッジを獲得できます。チャレンジラボには詳細な手順説明はありませんが、最小限のガイダンスを基にソリューションを構築することが求められ、Google Cloud テクノロジーのスキルがテストされます。このクエストは、Get Cooking in Cloud の動画シリーズの内容に基づいています。

詳細

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

詳細

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

詳細

SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。

詳細

Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。

詳細

BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジ コースと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの 習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。

詳細

Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…

詳細

In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.

詳細

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

詳細

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.

詳細

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

詳細

This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on GCP. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.

詳細

Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.

詳細

When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.

詳細

The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.

詳細

In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.

詳細

大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細

ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。

詳細

この入門コースは、他のコースとは異なるものです。 これらのラボは、Google Cloud Certified Associate Cloud Engineer 認定資格試験に出題されるトピックやサービスについて、IT プロフェッショナルがハンズオンで演習するために作成されました。IAM からネットワーキング、 Kubernetes Engine のデプロイまでを 網羅する個別のラボで構成されており、Goodle Cloud の知識が試されます。これらのラボによる演習で 知識やスキルや能力を向上させることは可能ですが、 試験ガイドやその他の対策資料も参照することをおすすめします。

詳細

DevOps によって 競争優位性を確保します。DevOps とは、ソフトウェア デリバリーを迅速化し、サービスの信頼性を向上させ、 ソフトウェアの開発と運用に影響を与えるステークホルダーの間で共有の当事者意識を高めることを目的とする、組織的、 文化的な考え方や取り組みです。このクエストでは、Google Cloud を使用して ソフトウェア デリバリーの速度、安定性、可用性、安全性を向上させる方法を学びます。 DevOps Research and Assessment チームが Google Cloud に加わりました。自社の DevOps チームの実力はいかがですか? 5 問の多肢選択式テストで評価してみましょう。

詳細

Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.

詳細

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

詳細

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

詳細

このクエストは、技術または財務の担当者で GCP の費用の管理を担う方に最適です。請求先アカウントを設定する方法、リソースを整理する方法、請求アクセス権限を管理する方法について学習します。ハンズオンラボでは、請求書を表示する方法、請求レポートを使用して GCP の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して請求データを分析する方法、データポータルを使用してカスタムの請求ダッシュボードを作成する方法について学習します。

詳細

With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.

詳細

Workspace は、Google Cloud で提供されている Google の共同作業用アプリケーション スイートです。この入門レベルのコースでは、 ユーザーの視点で Workspace の主要なアプリケーションの実践演習を行います。Workspace には、 ここで取り上げるもの以外にも、多くのアプリケーションやツールが含まれますが、 ここでは Gmail、カレンダー、スプレッドシートなど、いくつかの主要アプリを 体験します。各ラボの所要時間は 10~15 分ですが、ご自身でご自由に アプリケーションの操作を試すための時間も用意されています。

詳細

この入門レベルのコースでは、アプリケーション開発者を対象に、Google Cloud のエコシステムを使用して安全、スケーラブル、インテリジェントなクラウドネイティブ アプリケーションを構築する方法を説明 します。インフラストラクチャの設定を行わずにアプリケーションの開発やスケーリングを行う方法、 データ分析を実施する方法、データから分析情報を得る方法、トレーニング済み ML の API を使って開発し、ML のエキスパートでなくても ML を活用する方法を学びます。 また、さまざまな Google サービスや API とのシームレスな統合を利用して、 インテリジェントなアプリを作成します。

詳細

ネットワーキングはクラウド コンピューティングにおける主要なテーマです。Google Cloud の基盤となる 構造であり、すべてのリソースとサービスを 相互に接続するものです。このコースでは、Google Cloud の基本的なネットワーキング サービスについて学び、 優れたネットワークを開発するための専用ツールを使用して実践演習を 行います。VPC についての詳細な学習から、エンタープライズ クラスのロードバランサの作成まで、 「Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理」では、 堅牢なネットワークを今すぐ構築するために必要となる実践的な経験を積むことができます。

詳細

Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。

詳細

この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。

詳細