Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Earn a skill badge by completing the Get Started with Eventarc skill badge course, where you use Eventarc to create event triggers for different resources including Pub/Sub topics and Cloud Storage buckets.
Obtenez le badge de compétence de niveau Débutant en suivant le cours Configurer des comptes de service et des rôles IAM pour Google Cloud. Vous y découvrirez les comptes de service, les rôles personnalisés et comment définir des autorisations à l'aide de gcloud.
Obtenez le badge de compétence Débutant en suivant le cours API Cloud Speech : 3 applications, dans lequel vous apprendrez à utiliser les outils d'API liés à la parole pour effectuer de la synthèse et de la reconnaissance vocales.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Terminez le cours d'introduction Premiers pas avec Dataplex pour démontrer vos compétences dans les domaines suivants : création d'éléments Dataplex, création de types d'aspects et application de ces aspects aux entrées dans Dataplex.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Obtenez un badge de compétence en suivant le cours Premiers pas avec API Gateway, dans lequel vous apprendrez à utiliser API Gateway pour déployer, sécuriser et gérer des API avec une passerelle entièrement gérée.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Obtenez un badge de compétence en effectuant la quête Créer un lac de données sécurisé sur Cloud Storage, dans laquelle vous utiliserez Cloud Storage, IAM et Dataplex ensemble pour créer un lac de données sécurisé sur Google Cloud.
Complete the introductory Monitoring in Google Cloud skill badge course to demonstrate skills in the following: using Cloud Monitoring tools to monitor resources on Google Cloud.
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
Complete the introductory Use APIs to Work with Cloud Storage skill badge to demonstrate skills in the following: using APIs to work with Cloud Storage resources, including the Cloud Storage API.
Earn a skill badge by completing the Using the Google Cloud Speech API skill badge course, where you learn how create a Speech-to-Text API request, transcribe audio speech to text, and transcribe speech.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Cloud Storage, Cloud Functions, and Cloud Pub/Sub are all Google Cloud Platform services that can be used to store, process, and manage data. All three services can be used together to create a variety of data-driven applications. In this skill badge you use Cloud Storage to store images, Cloud Functions to process the images, and Cloud Pub/Sub to send the images to another application.
Cloud Storage, Cloud Functions et Cloud Pub/Sub sont tous des services Google Cloud Platform qui peuvent être utilisés pour stocker, traiter et gérer des données. Ces trois services peuvent être utilisés ensemble pour créer différentes applications basées sur les données. Dans ce cours, vous allez utiliser Cloud Storage pour stocker des images, Cloud Functions pour les traiter et Cloud Pub/Sub pour les envoyer à une autre application.
Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Pub/Sub dans lequel vous apprendrez à utiliser Pub/Sub depuis la console Cloud. Vous découvrirez également comment les jobs Cloud Scheduler peuvent vous faire gagner du temps et quand Pub/Sub Lite permet de réaliser des économies sur l'ingestion d'événements.
Obtenez le badge de compétence de niveau débutant "Créer des applications d'IA concrètes avec Gemini et Imagen" pour démontrer vos compétences dans les domaines suivants : reconnaissance d'image, traitement du langage naturel, génération d'images à l'aide des puissants modèles Gemini et Imagen de Google, et déploiement d'applications sur la plate-forme Vertex AI.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.