Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

Peter Dimo

Miembro desde 2023

Trabaja con modelos de Gemini en BigQuery Earned nov 4, 2024 EST
Aumenta la productividad con Gemini en BigQuery Earned oct 21, 2024 EDT
Procesamiento de datos sin servidores con Dataflow: Operaciones Earned sep 25, 2024 EDT
Procesamiento de datos sin servidores con Dataflow: Desarrolla canalizaciones Earned sep 22, 2024 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned sep 4, 2024 EDT
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned sep 4, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned ago 25, 2024 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned ago 13, 2024 EDT
Preparación para el proceso de certificación Professional Data Engineer Earned jul 31, 2024 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned jun 24, 2024 EDT
Getting Started with Application Development - Español Earned sep 27, 2023 EDT
Aspectos básicos de Google Cloud: Infraestructura principal Earned sep 19, 2023 EDT
Crea un almacén de datos con BigQuery Earned sep 14, 2023 EDT
BigQuery for Data Warehousing Earned sep 11, 2023 EDT

En este curso, se muestra cómo usar modelos de IA/AA para tareas de IA generativa en BigQuery. A través de un caso de uso práctico relacionado con la administración de relaciones con clientes, conocerás el flujo de trabajo para solucionar un problema empresarial con modelos de Gemini. Para facilitar la comprensión, el curso también proporciona orientación paso a paso a través de soluciones de programación utilizando consultas en SQL y notebooks de Python.

Más información

En este curso, se explora Gemini en BigQuery, un conjunto de funciones potenciadas por IA que se diseñaron para asistir el flujo de trabajo de datos a IA. Estas funciones incluyen la exploración y preparación de datos, la generación de código y la solución de problemas, así como el descubrimiento y la visualización de flujos de trabajo. A través de explicaciones conceptuales, un caso de uso práctico y labs prácticos, en este curso se les enseña a los especialistas en datos a impulsar su productividad y acelerar la canalización de desarrollo.

Más información

En esta última parte de la serie de cursos de Dataflow, presentaremos los componentes del modelo operativo de Dataflow. Examinaremos las herramientas y técnicas que permiten solucionar problemas y optimizar el rendimiento de las canalizaciones. Luego, revisaremos las prácticas recomendadas de las pruebas, la implementación y la confiabilidad en relación con las canalizaciones de Dataflow. Concluiremos con una revisión de las plantillas, que facilitan el ajuste de escala de las canalizaciones de Dataflow para organizaciones con cientos de usuarios. Estas clases asegurarán que su plataforma de datos sea estable y resiliente ante circunstancias inesperadas.

Más información

En esta segunda parte de la serie de cursos sobre Dataflow, analizaremos en profundidad el desarrollo de canalizaciones con el SDK de Beam. Comenzaremos con un repaso de los conceptos de Apache Beam. A continuación, analizaremos el procesamiento de datos de transmisión con ventanas, marcas de agua y activadores. Luego, revisaremos las opciones de fuentes y receptores en sus canalizaciones, los esquemas para expresar datos estructurados y cómo realizar transformaciones con estado mediante las API de State y de Timer. Después, revisaremos las prácticas recomendadas que ayudan a maximizar el rendimiento de las canalizaciones. Al final del curso, presentaremos SQL y Dataframes para representar su lógica empresarial en Beam y cómo desarrollar canalizaciones de forma iterativa con notebooks de Beam.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

En este curso, los desarrolladores de aplicaciones aprenderán a diseñar y desarrollar aplicaciones nativas de la nube que integren perfectamente los servicios administrados de Google Cloud. A través de una serie de presentaciones, demostraciones y labs prácticos, los participantes aprenderán a aplicar las prácticas recomendadas del desarrollo de aplicaciones y usar los servicios de almacenamiento de Google Cloud apropiados para el almacenamiento de objetos, datos relacionales, almacenamiento en caché y análisis. Es obligatorio completar una versión de cada lab. Los labs están disponibles en Node.js y, en la mayoría de los casos, también en Python o Java. Puedes completar cada lab en el lenguaje que prefieras. Este es el primer curso de la serie Developing Applications with Google Cloud. Después de completarlo, inscríbete en el curso Securing and Integrating Components of your Application.

Más información

Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.

Más información

Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.

Más información

¿Quiere optimizar o compilar su almacén de datos? Aprenda las prácticas recomendadas para extraer, transformar y cargar sus datos en Google Cloud con BigQuery. En esta serie de labs interactivos, creará y optimizará su almacén de datos con una variedad de conjuntos de datos públicos de BigQuery a gran escala. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.

Más información