In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
스트리밍을 통해 비즈니스 운영에 대한 실시간 측정항목을 얻을 수 있게 되면서 스트리밍 데이터 처리의 사용이 늘고 있습니다. 이 과정에서는 Google Cloud에서 스트리밍 데이터 파이프라인을 빌드하는 방법을 다룹니다. 수신되는 스트리밍 데이터 처리와 관련해 Pub/Sub를 설명합니다. 이 과정에서는 Dataflow를 사용해 집계 및 변환을 스트리밍 데이터에 적용하는 방법과 처리된 레코드를 분석을 위해 BigQuery 또는 Bigtable에 저장하는 방법에 대해서도 다룹니다. Google Cloud에서 Qwiklabs를 사용해 스트리밍 데이터 파이프라인 구성요소를 빌드하는 실습을 진행해 볼 수도 있습니다.
데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.