Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

Jonathan Muwanguzi

Miembro desde 2023

Liga de Diamantes

46810 puntos
Operaciones de aprendizaje automático (MLOps) con Vertex AI: Administra atributos Earned ene 8, 2024 EST
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned ene 8, 2024 EST
Recommendation Systems on Google Cloud Earned ene 8, 2024 EST
Natural Language Processing on Google Cloud Earned ene 6, 2024 EST
Aprendizaje automático en empresas Earned ene 5, 2024 EST
Ingeniería de atributos Earned ene 5, 2024 EST
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned ene 5, 2024 EST
Launching into Machine Learning - Español Earned ene 3, 2024 EST
Introducción a la IA y el aprendizaje automático en Google Cloud Earned ene 3, 2024 EST
Explorador de IA generativa - Vertex AI Earned ene 1, 2024 EST
Introducción a Vertex AI Studio Earned ene 1, 2024 EST
Creación de modelos de generación de subtítulos de imágenes Earned ene 1, 2024 EST
Arquitectura de codificador-decodificador Earned ene 1, 2024 EST
Modelos de transformadores y modelo BERT Earned ene 1, 2024 EST
Mecanismo de atención Earned ene 1, 2024 EST
Introducción a la generación de imágenes Earned ene 1, 2024 EST
Manage Data Models in Looker Earned dic 31, 2023 EST
Applying Advanced LookML Concepts in Looker Earned dic 30, 2023 EST
Crea modelos de AA con BigQuery ML Earned dic 10, 2023 EST
Preparing for Your Professional Cloud Network Engineer Journey Earned dic 8, 2023 EST
Preparación para el proceso de certificación Professional Data Engineer Earned oct 26, 2023 EDT
Ingeniería de datos para crear modelos predictivos con BigQuery ML Earned oct 20, 2023 EDT
Crea un almacén de datos con BigQuery Earned oct 17, 2023 EDT
Prepara datos para las APIs de AA en Google Cloud Earned oct 16, 2023 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned oct 12, 2023 EDT
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned oct 12, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned oct 9, 2023 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned oct 9, 2023 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned sep 30, 2023 EDT

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Más información

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.

Más información

El curso Explorador de IA generativa - Vertex AI es una colección de labs sobre cómo usar la IA generativa en Google Cloud. A través de los labs, aprenderás sobre cómo usar los modelos de la familia de APIs de PaLM de Vertex AI, incluidos text-bison, chat-bison y textembedding-gecko. También aprenderás sobre el diseño de instrucciones, las prácticas recomendadas y cómo se puede usar para la ideación, la clasificación, la extracción y el resumen de texto, y mucho más. También aprenderás a ajustar un modelo de base mediante el entrenamiento personalizado de Vertex AI y, luego, implementarlo en un extremo de Vertex AI.

Más información

En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.

Más información

En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.

Más información

En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.

Más información

En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.

Más información

Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.

Más información

En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.

Más información

Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Más información

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

Más información

Obtén la insignia de habilidad intermedia Crea modelos de AA con BigQuery ML y demuestra tus habilidades para crear y evaluar modelos de aprendizaje automático con BigQuery ML para realizar predicciones de datos. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.

Más información

This course helps you structure your preparation for the Professional Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML. Una insignia de de habilidad es una insignia digital exclusiva otorgada por Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad para aplicar tus conocimientos en un entorno interactivo y práctico. Completa la insignia de habilidad del curso y el Lab de desafío de la evaluación final para recibir una insignia digital que podrás compartir en tus redes.

Más información

Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.

Más información

Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tus contactos.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información