Nilesh Gandas
Date d'abonnement : 2020
Date d'abonnement : 2020
Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les développeurs à créer des applications. Vous apprendrez à demander à Gemini d'expliquer du code, de recommander des services Google Cloud et de générer du code pour vos applications. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de développement d'applications. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, vous aide à utiliser les produits et services Google pour développer, tester et gérer des applications. Avec l'assistance de Gemini, vous apprendrez à développer une application Web, à corriger les erreurs de l'application, à créer des tests et à interroger des données. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le cycle de vie du développement logiciel (SDLC, software development lifecycle). Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Obtenez le badge de compétence intermédiaire Explorer l'IA générative avec l'API Gemini dans Vertex AI pour démontrer vos compétences dans les domaines suivants : la génération de texte, l'analyse d'images et de vidéos pour améliorer la création de contenu, et l'application de techniques d'appel de fonction dans l'API Gemini. Découvrez comment exploiter des techniques Gemini avancées et étendre les capacités de vos projets optimisés par l'IA, et explorez le fonctionnement de la génération de contenu multimodal.
Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et …
Terminez le cours intermédiaire Développer des applications d'IA générative avec Gemini et Streamlit pour recevoir un badge démontrant vos compétences dans les domaines suivants : la génération de texte, l'application d'appels de fonction avec le SDK Python et l'API Gemini, et le déploiement d'une application Streamlit avec Cloud Run. Vous découvrirez différentes manières de demander à Gemini de générer du texte, d'utiliser Cloud Shell pour effectuer des tests et des itérations sur une application Streamlit, puis de l'empaqueter en tant que conteneur Docker déployé dans Cloud Run.
Les applications d'IA générative peuvent créer de nouvelles expériences utilisateur qu'il était quasiment impossible d'obtenir avant l'invention des grands modèles de langage (LLM). En tant que développeur d'applications, comment pouvez-vous utiliser l'IA générative pour créer des applications interactives et performantes sur Google Cloud ? Dans ce cours, vous allez découvrir les applications d'IA générative, et comment vous pouvez utiliser la conception de requêtes et la génération augmentée par récupération (RAG) pour créer des applications performantes à l'aide de LLM. Vous allez vous familiariser avec une architecture prête pour la production qui peut être utilisée pour les applications d'IA générative, et vous allez créer une application de chat basée sur des LLM et sur le RAG.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.
Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
Ce cours présente aux participants des techniques pour surveiller et améliorer les performances de l'infrastructure et des applications dans Google Cloud. À travers un ensemble de présentations, de démonstrations, d'ateliers pratiques et d'études de cas concrets, les participants se familiariseront avec la surveillance full stack, la gestion et l'analyse des journaux en temps réel, le débogage de code en production, le traçage des goulots d'étranglement affectant les performances des applications, et le profilage de l'utilisation du processeur et de la mémoire.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Terminez le cours intermédiaire Implémenter des workflows DevOps dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de dépôts git avec Cloud Source Repositories, le lancement, la gestion et le scaling de déploiements sur Google Kubernetes Engine (GKE), et le développement de l'architecture de pipelines CI/CD qui automatisent la compilation d'images de conteneurs et leur déploiement vers GKE. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
In this fundamental-level course, you will learn the ins and outs of Google Cloud's operations suite running on Google Kubernetes Engine, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. The labs in this course will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials course. Additional lab experience with the labs in the Baseline - Infrastructure course will also be useful. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the additional challenge lab at the end of this course to receive an exclusive Google Cloud digital badge.
Dans bien des services informatiques, il existe des divergences entre les avantages souhaités par les développeurs, à savoir l'agilité, et ceux des opérateurs, qui recherchent la stabilité. L'ingénierie de la fiabilité des sites (SRE) permet à Google d'aligner les mesures incitatives entre le développement et les opérations, et de proposer une assistance à la production critique. Adopter des pratiques techniques et culturelles de l'ingénierie SRE permet d'améliorer la collaboration entre les équipes métiers et informatiques. Ce cours présente les pratiques clés de l'ingénierie SRE façon Google, ainsi que le rôle déterminant que jouent les responsables IT et les chefs d'entreprise dans la réussite de son adoption au sein de leur organisation.
Surpassez vos concurrents grâce au DevOps. Le DevOps est un mouvement organisationnel et culturel visant à accélérer la livraison de logiciels, à améliorer la fiabilité des services et à permettre aux acteurs du développement logiciel d'être copropriétaires de leur travail. Dans ce cours, vous allez apprendre à utiliser Google Cloud pour optimiser les délais, la stabilité, la disponibilité et la sécurité de vos livraisons de logiciels. Le programme DevOps Research and Assessment a rejoint Google Cloud. Comment votre équipe se positionne-t-elle ? Répondez à ce quiz à choix multiples de cinq questions pour le découvrir !
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
Ce cours à la demande permet aux participants de comprendre et d’adopter le maillage de services basé sur Istio avec Anthos pour centraliser l'observabilité, la gestion du trafic et la sécurité au niveau du service. Il s'agit du deuxième cours de la série "Architecting Hybrid Cloud Infrastructure with Anthos". Une fois ce cours terminé, les participants doivent suivre le cours "Hybrid Cloud Multi-Cluster with Anthos". Vous devez avoir terminé le parcours "Architecting with Google Kubernetes Engine" pour pouvoir suivre ce cours.
Terminez le cours Architecture cloud : concevoir, implémenter et gérer pour recevoir un badge démontrant vos compétences dans les domaines suivants : le déploiement d'un site Web accessible publiquement à l'aide de serveurs Web Apache, la configuration d'une VM Compute Engine à l'aide de scripts de démarrage, la configuration d'une session RDP sécurisée à l'aide de règles de pare-feu et d'un hôte bastion Windows, la création d'une image Docker, son déploiement dans un cluster Kubernetes et sa mise à jour, et la création d'une instance Cloud SQL et l'importation d'une base de données MySQL. Le cours lié à ce badge de compétence est une excellente ressource pour comprendre les sujets qui seront abordés dans l'examen de certification Google Cloud Certified Professional Cloud Architect. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connais…
Ce cours permet aux participants d'apprendre à créer des solutions hautement fiables et efficaces sur Google Cloud en s'appuyant sur des modèles de conception éprouvés. Il s'inscrit dans la continuité des cours "Concevoir une architecture avec Google Compute Engine" et "Concevoir une architecture avec Google Kubernetes Engine" et demande une expérience pratique des technologies abordées dans chaque cours. À travers un ensemble de présentations, d'activités de conception et d'ateliers pratiques, les participants apprennent à définir des exigences techniques et commerciales, et à trouver un équilibre entre elles pour concevoir des déploiements Google Cloud hautement fiables et disponibles, sécurisés et économes.
Cette quête fondamentale est unique parmi les autres offres Qwiklabs. Les ateliers ont été conçus pour former les professionnels de l'informatique aux thèmes et aux services figurant dans la certification Google Cloud.
Dans ce cours, les utilisateurs expérimentés de Google Cloud apprendront à décrire et lancer des ressources cloud avec Terraform. Il s'agit d'un outil Open Source qui codifie les API dans des fichiers de configuration déclaratifs pouvant être partagés par les membres d'une équipe, traités comme du code, modifiés, révisés et gérés par version. Dans ces ateliers pratiques, vous utiliserez des exemples de modèles et apprendrez à lancer une série de configurations, allant de serveurs simples à des applications avec équilibrage de charge complet.
Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé.
La sécurité est un aspect primordial des services Google Cloud. C'est pourquoi Google Cloud a développé des outils spécifiques pour garantir la sécurité de vos projets et le bon fonctionnement de l'authentification. Dans ce cours d'introduction, vous allez pouvoir vous familiariser avec le service Identity and Access Management (IAM) de Google Cloud, la référence en termes de gestion des comptes utilisateur et de machines virtuelles. Vous développerez vos compétences en sécurité réseau en provisionnant des VPC et des VPN, et vous découvrirez les outils existants pour lutter contre les menaces de sécurité et la perte de données.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
La gestion des réseaux est l'un des aspects les plus importants du cloud computing. Il s'agit de la structure sous-jacente de Google Cloud, qui relie l'ensemble de vos ressources et services entre eux. Ce cours aborde les services de gestion des réseaux essentiels de Google Cloud et vous permet de vous familiariser avec des outils spécialisés dans le développement de réseaux matures grâce à des ateliers pratiques. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud vous permettra d'acquérir l'expérience pratique nécessaire pour développer des réseaux robustes.
Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Kubernetes est le système d'orchestration de conteneurs le plus populaire, et Google Kubernetes Engine a été conçu spécifiquement pour les déploiements gérés de Kubernetes dans Google Cloud. Dans ce cours de niveau avancé, vous allez suivre des ateliers pratiques pour apprendre à configurer les images et les conteneurs Docker, ainsi qu'à déployer des applications Kubernetes Engine opérationnelles. Vous allez également acquérir les compétences nécessaires pour intégrer l'orchestration de conteneurs à votre propre workflow. Vous cherchez un atelier challenge pratique pour démontrer vos compétences et valider vos connaissances ? Suivez cet atelier challenge complémentaire après avoir terminé ce cours et le cours Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge numérique Google Cloud exclusif.
Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.
Ce cours d'introduction est unique en son genre parmi les autres offres de cours. Il se compose d'ateliers pratiques conçus pour permettre aux professionnels de l'informatique de se familiariser avec les sujets et les services au programme de la certification Google Cloud Certified Associate Cloud Engineer. De l'IAM à la gestion de réseaux en passant par le déploiement avec Kubernetes Engine, vous allez suivre dans ce cours des ateliers spécifiques qui mettront à l'épreuve vos connaissances sur Google Cloud. Attention : même si ces ateliers constituent une bonne base pour développer vos compétences, nous vous recommandons de consulter en supplément le guide de l'examen et les autres ressources de préparation disponibles.
Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.