加入 登录

在 Google Cloud 控制台中运用您的技能

Aliyan Waheed

成为会员时间:2023

黄金联赛

22205 积分
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Jan 24, 2024 EST
负责任的 AI 简介 Earned Jan 24, 2024 EST
大型语言模型简介 Earned Jan 24, 2024 EST
生成式 AI 简介 Earned Jan 24, 2024 EST
创建图片标注模型 Earned Jan 24, 2024 EST
Transformer 模型和 BERT 模型 Earned Jan 24, 2024 EST
编码器-解码器架构 Earned Jan 24, 2024 EST
注意力机制 Earned Jan 24, 2024 EST
图像生成简介 Earned Jan 24, 2024 EST
Google Meet 中的 Gemini Earned Jan 24, 2024 EST
Google 表格中的 Gemini Earned Jan 24, 2024 EST
Google 幻灯片中的 Gemini Earned Jan 24, 2024 EST
Google 文档中的 Gemini Earned Jan 24, 2024 EST
Gmail 中的 Gemini Earned Jan 24, 2024 EST
Gemini for Google Workspace 简介 Earned Jan 24, 2024 EST
Analyzing and Visualizing Data in Looker Earned Jan 24, 2024 EST
Google Cloud 数据分析功能简介 Earned Jan 23, 2024 EST
Google Cloud Computing Foundations: Networking & Security in Google Cloud Earned Jan 22, 2024 EST
探索生成式 AI - Vertex AI Earned Jan 21, 2024 EST
Vertex AI Studio 简介 Earned Jan 10, 2024 EST
Generative AI Fundamentals - 简体中文 Earned Jan 10, 2024 EST
Google Cloud 上的 AI 和机器学习简介 Earned Jan 10, 2024 EST
Google Cloud Computing Foundations: Cloud Computing Fundamentals Earned Jan 10, 2024 EST

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。

了解详情

本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。

了解详情

本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。

了解详情

本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。

了解详情

本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。

了解详情

Google Workspace 专用 Gemini 是一个插件,可为用户提供对生成式 AI 功能的访问权限。本课程深入探讨了“Google Meet 中的 Gemini”的功能。通过视频课程、实操活动和实际示例,您将全面了解 Google Meet 中的 Gemini 功能。您将学习如何使用 Gemini 生成背景图片、提高视频质量以及翻译字幕。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google Meet 中的 Gemini 尽可能提高视频会议的效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 表格中使用它们来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 幻灯片中使用它们来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,用户可通过它来使用生成式 AI 功能。本课程通过视频课程、实操活动和实际示例,深入探讨了“Google 文档中的 Gemini”的功能。您将学习如何使用 Gemini 来根据提示生成书面内容。您还会探索如何使用 Gemini 来修改已撰写好的文本,帮助提升整体工作效率。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google 文档中的 Gemini 来提升写作水平。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Gmail 中使用这些功能来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本学习路线中,您将了解 Gemini 的主要功能,以及如何在 Google Workspace 中使用它们来提高工作效率。

了解详情

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

了解详情

在本新手级课程中,您将了解 Google Cloud 数据分析工作流,以及可用于探索、分析和直观呈现数据并与相关人员共享发现结果的工具。结合案例研究、实操实验、讲座和测验/演示,本课程展示了如何将原始数据集转化为纯净数据,进而转化为实用的可视化图表和信息中心。无论您是已经在从事数据工作并想了解如何通过 Google Cloud 取得成功,还是在寻求职业发展,都可以借助本课程迈出第一步。几乎所有在工作中执行或使用数据分析的人都可以从本课程中受益。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.

了解详情

探索生成式 AI - Vertex AI 课程汇集了多组实验, 指导用户在 Google Cloud 平台上运用生成式 AI。参与实验,您将了解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison 和 textembedding-gecko。您还将了解提示设计、最佳实践, 以及如何使用生成式 AI 进行构思、文本分类、文本提取、文本 总结等任务。您还将学习如何通过 Vertex AI 自定义训练对基础模型进行调优, 并将模型部署到 Vertex AI 端点。

了解详情

本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。

了解详情

完成 Introduction to Generative AI、Introduction to Large Language Models 和 Introduction to Responsible AI 三门课程,赢取技能徽章。通过最终测验,即表明您理解了生成式 AI 的基本概念。 技能徽章是由 Google Cloud 颁发的数字徽章,旨在认可您对 Google Cloud 产品与服务的了解程度。公开您的个人资料并将技能徽章添加到您的社交媒体个人资料中,以此来分享您获得的成就。

了解详情

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.

了解详情