Rafli Fahri
Mitglied seit 2024
Bronze League
59845 Punkte
Mitglied seit 2024
Hey there! You're invited to game on with Skills Boost Arcade Trivia for April Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 1 badge!
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
Dieser Kurs behandelt Gemini in BigQuery, eine Suite KI-gesteuerter Funktionen zur Aufbereitung von Daten für die Verwendung in künstlicher Intelligenz. Zu diesen Funktionen gehören explorative Datenanalyse und ‑aufbereitung, Codegenerierung und Fehlerbehebung sowie Workflow-Erkennung und ‑Visualisierung. Durch konzeptionelle Erläuterungen, einen praxisnahen Anwendungsfall und praktische Übungen können Datenexperten mit diesem Kurs ihre Produktivität steigern und die Entwicklungspipeline beschleunigen.
In diesem Kurs wird gezeigt, wie Sie KI-/ML-Modelle für Aufgaben basierend auf generativer KI in BigQuery verwenden. Anhand eines praktischen Anwendungsfalls zum Customer-Relationship-Management lernen Sie den Workflow zur Lösung eines Geschäftsproblems mit Gemini-Modellen kennen. Zur besseren Nachvollziehbarkeit bietet der Kurs auch eine Schritt-für-Schritt-Anleitung für das Programmieren von Lösungen mithilfe von SQL-Abfragen und Python-Notebooks.
Mit dem Skill-Logo zum Kurs Generative KI-Anwendungen mit Gemini und Streamlit entwickeln weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Texterstellung, Anwendung von Funktionsaufrufen mit dem Python SDK und der Gemini API und Bereitstellung einer Streamlit-Anwendung mit Cloud Run. Dabei lernen Sie, wie Sie mithilfe von Gemini und entsprechenden Prompts Text erstellen, Cloud Shell zum Testen und Iterieren einer Streamlit-Anwendung nutzen und diese Anwendung dann als Docker-Container zur Bereitstellung in Cloud Run verpacken.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
Mit dem Skill-Logo zum Kurs Cloud Speech API: 3 Möglichkeiten weisen Sie Grundkenntnisse nach, indem Sie lernen, wie Sie sprachbezogene API-Tools verwenden, um Sprache zu synthetisieren und zu transkribieren.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In diesem Kurs erfahren Sie, wie Sie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, bei der Analyse von Kundendaten und der Prognose von Produktverkäufen unterstützen kann. Außerdem lernen Sie, wie Sie mithilfe von Kundendaten in BigQuery Neukunden identifizieren, kategorisieren und gewinnen können. In den praxisorientierten Labs erfahren Sie, wie Gemini Datenanalysen und Workflows für Machine Learning optimiert. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.
Complete the intermediate Secure Software Delivery skill badge to demonstrate your proficiency in proactively integrating security into the software development lifecycle (SDLC) with DevSecOps principles. You'll learn how to utilize Google Kubernetes Engine (GKE) and Cloud Run for secure container image deployment, implement automated vulnerability scanning to proactively identify risks, and streamline application development with Artifact Registry while maintaining a focus on security. Additionally, you'll gain skills in integrating Cloud Build for robust development processes and implementing Admission Control Policies for fine-grained control over your environment.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Sichern Sie sich ein Skill-Logo, indem Sie die Aufgabenreihe Google Cloud Compute: Grundlagen abschließen. Dabei lernen Sie, wie Sie Compute Engine bei der Arbeit mit virtuellen Maschinen (VMs), nichtflüchtigen Speichern und Webservern nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie diese Skill-Logo-Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu bekommen, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo „Praxisorientierte KI-Anwendungen mit Gemini und Imagen entwickeln“ weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bilderkennung, Natural Language Processing, Bildgenerierung mit den leistungsstarken Gemini- und Imagen-Modellen von Google sowie Bereitstellen von Anwendungen auf der Vertex AI-Plattform.
Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.
This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications
Mit dem Skill-Logo Monitoring und Logging mit Google Cloud Observability weisen Sie Grundkenntnisse in folgenden Bereichen nach: Überwachen virtueller Maschinen in der Compute Engine, Einsetzen von Cloud Monitoring für Verwaltung mehrerer Projekte, Erweitern von Monitoring- und Logging-Funktionen zur Nutzung in Cloud Functions, Erstellen und Senden von benutzerdefinierten Anwendungsmesswerten und Konfigurieren von Cloud Monitoring-Benachrichtigungen auf der Grundlage benutzerdefinierter Messwerte.
In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.
Mit dem Skill-Logo DevOps-Workflows in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Git-Repositories mit Cloud Source Repositories erstellen, Deployments in der Google Kubernetes Engine (GKE) starten, verwalten und skalieren sowie CI/CD-Pipelines zur Automatisierung von Container-Image-Builds und GKE-Deployments entwerfen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
This course equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine courses and assumes hands-on experience with the technologies covered in either of those courses. Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk entwickeln abschließen. Dabei wird anhand verschiedener Aufgaben behandelt, wie Sie Anwendungen bereitstellen und beobachten, darunter: IAM-Rollen prüfen, den Zugriff auf Projekte ermöglichen/entfernen, VPC-Netzwerke erstellen, Compute Engine-VMs bereitstellen und beobachten, SQL-Abfragen schreiben, VMs in der Compute Engine bereitstellen und beobachten sowie Anwendungen mithilfe von Kubernetes und mehreren Deploymentmodellen bereitstellen.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.
Mit dem Skill-Logo Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: Schreiben von gcloud-Befehlen, Verwenden von Cloud Shell, Erstellen und Bereitstellen von virtuellen Maschinen in der Compute Engine und Konfigurieren von Netzwerk- und HTTP-Load-Balancern. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.