Richard Andrade
Miembro desde 2022
Liga de Plata
5200 puntos
Miembro desde 2022
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.
Obtén la insignia de habilidad intermedia completando el curso Crea e implementa soluciones de aprendizaje automático en Vertex AI, en el que aprenderás a usar la plataforma de Vertex AI de Google Cloud, así como AutoML y los servicios de entrenamiento personalizado para entrenar, evaluar, ajustar y, además, implementar modelos de aprendizaje automático. Este curso con insignia de habilidad está dirigido a ingenieros de aprendizaje automático y científicos de datos profesionales. Una insignia de habilidad es una insignia digital exclusiva otorgada por Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad para aplicar tus conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir en tus redes.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.
En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.
En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.
En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…
Data Catalog es un servicio de administración de metadatos completamente administrado y escalable que permite a las organizaciones descubrir, comprender y administrar todos sus datos con rapidez.En esta Quest, comenzará por aprender actividades básicas como buscar y etiquetar recursos de datos y metadatos con Data Catalog. Una vez que aprenda a crear sus propias plantillas de etiquetado que se mapeen a datos de tablas de BigQuery, descubrirá cómo incorporar MySQL, PostgreSQL y SQL Server a conectores de Data Catalog.
Obtén la insignia de habilidad intermedia Crea modelos de AA con BigQuery ML y demuestra tus habilidades para crear y evaluar modelos de aprendizaje automático con BigQuery ML para realizar predicciones de datos. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.
Completa la insignia de habilidad introductoria del curso Obtén estadísticas a partir de datos de BigQuery y demuestra tus habilidades para realizar las siguientes actividades: escribir consultas en SQL, consultar tablas públicas, cargar datos de muestra en BigQuery, solucionar problemas de errores de sintaxis habituales con el validador de consultas en BigQuery y crear informes en Looker Studio con la conexión a datos de BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite el equipo de Google Cloud en reconocimiento a tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tus contactos.
Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tus contactos.
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
Obtén la insignia de habilidad introductoria Preparar datos para paneles de Looker e informes y demuestra tus habilidades para realizar las siguientes tareas: filtrar, ordenar y reorientar datos, combinar resultados de diferentes exploraciones de Looker y usar funciones y operadores para crear informes y paneles de Looker para el análisis y la visualización de datos. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar estos conocimientos en un entorno interactivo y práctico. Completa este curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tu red.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
En este curso, definimos qué es el aprendizaje automático y cómo puede beneficiar a tu negocio. Verás algunas demostraciones de AA en acción y aprenderás términos clave de AA, como instancias, atributos y etiquetas. En los labs interactivos, practicarás la invocación de las APIs de AA previamente entrenadas que están disponibles y crearás tus propios modelos de aprendizaje automático con solo SQL y BigQuery ML.
El tercer curso de esta serie es Achieving Advanced Insights with BigQuery. En este curso, aumentarás tu conocimiento de SQL a medida que profundizamos en funciones avanzadas y cómo desglosar una consulta compleja en pasos más sencillos. Abordaremos la arquitectura interna de BigQuery (almacenamiento fragmentado basado en columnas) y temas avanzados de SQL, como los campos anidados y repetidos a través del uso de arrays y structs. Finalmente, profundizaremos en la optimización de tus consultas para mejorar el rendimiento y cómo puedes proteger tus datos con vistas autorizadas. Después de completar este curso, inscríbete en el curso Applying Machine Learning to your Data with Google Cloud.
Este es el segundo curso de la serie de cursos Data to Insights. Aquí, veremos cómo transferir nuevos conjuntos de datos externos a BigQuery y visualizarlos con Looker Studio. También analizaremos los conceptos intermedios de SQL, como las operaciones JOIN y UNION de varias tablas, que te permitirán analizar datos de varias fuentes. Nota: Incluso si tienes experiencia en SQL, hay aspectos específicos de BigQuery (como la gestión del almacenamiento en caché de las consultas y los comodines de tablas) que pueden ser nuevos para ti. Después de completar el curso, inscríbete en el curso Achieving Advanced Insights with BigQuery.
En este curso, veremos cuáles son los desafíos comunes a los que se enfrentan los analistas de datos y cómo resolverlos con las herramientas de macrodatos en Google Cloud. Aprenderás algunos conceptos de SQL y adquirirás conocimientos sobre el uso de BigQuery y Dataprep para analizar y transformar conjuntos de datos. Este es el primer curso de la serie From Data to Insights with Google Cloud. Después de completarlo, inscríbete en el curso Creating New BigQuery Datasets and Visualizing Insights.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.