가입 로그인

Google Cloud 콘솔에서 기술 적용

Worakan Lasudee

회원 가입일: 2022

머신러닝용 BigQuery Earned 11월 3, 2022 EDT
Machine Learning APIs Earned 11월 3, 2022 EDT
Automate Data Capture at Scale with Document AI Earned 11월 3, 2022 EDT
Share Data Using Google Data Cloud Earned 11월 2, 2022 EDT
Perform Predictive Data Analysis in BigQuery Earned 10월 10, 2022 EDT
Build LookML Objects in Looker Earned 10월 6, 2022 EDT
DEPRECATED Language, Speech, Text, & Translation with Google Cloud APIs Earned 4월 8, 2022 EDT
Sports Analytics: Pitch Perfect BigQuery Earned 4월 7, 2022 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned 4월 7, 2022 EDT
BigQuery 데이터에서 인사이트 도출 Earned 4월 7, 2022 EDT
Understanding LookML in Looker Earned 4월 7, 2022 EDT
Data Catalog Fundamentals Earned 4월 7, 2022 EDT
기준: 데이터, ML, AI Earned 4월 7, 2022 EDT
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 4월 6, 2022 EDT

SQL만으로 몇 시간이 아닌 몇 분 만에 머신러닝 모델을 빌드하고 싶으신가요? BigQuery ML은 데이터 분석가가 기존 SQL 도구와 기술을 사용하여 머신러닝 모델을 만들고, 학습시키고, 평가하고, 예측할 수 있게 하여 머신러닝을 범용화합니다. 이 실습 시리즈에서는 다양한 모델 유형을 실험하고 좋은 모델을 만드는 요소를 알아봅니다.

자세히 알아보기

It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

자세히 알아보기

Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI quest, where you learn how to extract, process, and capture data using Document AI A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

자세히 알아보기

Earn a skill badge by completing the Share Data Using Google Data Cloud course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

자세히 알아보기

Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

자세히 알아보기

In this quest you will use a collection of Google APIs that are all related to language, and speech. You will use the Speech-to-Text API to transcribe an audio file into a text file, the Cloud Translation API to translate from one language to another, the Cloud Translation API to detect what language is being used and translate to a different language, the Natural Language API to classify text and analyze sentiment, and create synthetic speech.

자세히 알아보기

In this introductory level Quest you will gain practical experience on the fundamentals of sports data science using BigQuery. Start your journey by creating a soccer dataset in BigQuery by importing CSV and JSON files. Harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data and evaluate the impressiveness of World Cup goals.

자세히 알아보기

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

자세히 알아보기

초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

자세히 알아보기

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

자세히 알아보기

빅데이터, 머신러닝, 인공지능은 오늘날 인기 있는 컴퓨팅 관련 주제이지만 매우 전문화된 분야이기 때문에 초급용 자료를 구하기 어렵습니다. 다행히도 Google Cloud는 이러한 분야에서 사용자 친화적인 서비스를 제공하며 초급 과정을 통해 학습자에게 BigQuery, Cloud Speech API, Video Intelligence와 같은 도구를 사용해 시작할 기회를 제공합니다.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기