Gabung Login

Terapkan keterampilan Anda di Konsol Google Cloud

Amit Mittal

Menjadi anggota sejak 2025

Diamond League

52552 poin
AI Infrastructure: Cloud TPUs Earned Okt 7, 2025 EDT
AI Infrastructure: Cloud GPUs Earned Okt 7, 2025 EDT
AI Infrastructure: Introduction to AI Hypercomputer Earned Okt 7, 2025 EDT
Agen AI Generatif: Mentransformasi Organisasi Anda Earned Mei 4, 2025 EDT
Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda Earned Mei 4, 2025 EDT
AI Generatif: Memahami Lanskap Earned Mei 4, 2025 EDT
AI Generatif: Memahami Konsep Dasar Earned Mei 4, 2025 EDT
AI Generatif: Lebih dari Sekadar Chatbot Earned Mei 4, 2025 EDT
Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML Earned Apr 30, 2025 EDT
Membuat Aplikasi AI Generatif di Google Cloud Earned Apr 30, 2025 EDT
Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI Earned Apr 30, 2025 EDT
Membuat Model ML dengan BigQuery ML Earned Apr 24, 2025 EDT
Manage Kubernetes in Google Cloud Earned Apr 20, 2025 EDT
Put It All Together: Prepare for a Cloud Data Analyst Job Earned Apr 20, 2025 EDT
Menyiapkan Data untuk ML API di Google Cloud Earned Apr 14, 2025 EDT
The Power of Storytelling: How to Visualize Data in the Cloud Earned Apr 13, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Mar 30, 2025 EDT
Pengantar Analisis Data di Google Cloud Earned Mar 22, 2025 EDT
Enterprise Search on Generative AI App Builder Earned Mar 18, 2025 EDT
Responsible AI: Menerapkan Prinsip AI dengan Google Cloud Earned Mar 18, 2025 EDT
The Skills Challenge at Next 2025 Earned Mar 15, 2025 EDT
Responsible AI untuk Developer: Keadilan & Bias Earned Mar 9, 2025 EDT
Responsible AI untuk Developer: Privasi & Keamanan Earned Mar 9, 2025 EDT
Machine Learning Operations (MLOps) dengan Vertex AI: Evaluasi Model Earned Mar 8, 2025 EST
Responsible AI untuk Developer: Penafsiran & Transparansi Earned Mar 1, 2025 EST
Pengantar Model Bahasa Besar Earned Feb 27, 2025 EST
Machine Learning Operations (MLOps) untuk AI Generatif Earned Feb 27, 2025 EST
Pengantar AI Generatif Earned Feb 26, 2025 EST
Production Machine Learning Systems Earned Feb 26, 2025 EST
Data Transformation in the Cloud Earned Feb 20, 2025 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Feb 15, 2025 EST
Feature Engineering Earned Feb 12, 2025 EST
Data Management and Storage in the Cloud Earned Feb 8, 2025 EST
Machine Learning Operations (MLOps): Getting Started Earned Feb 5, 2025 EST
Introduction to Data Analytics in Google Cloud Earned Jan 31, 2025 EST
Working with Notebooks in Vertex AI Earned Jan 28, 2025 EST
Pengantar AI dan Machine Learning di Google Cloud Earned Jan 24, 2025 EST
Professional Machine Learning Engineer Study Guide Earned Jan 18, 2025 EST

Welcome to the Cloud TPUs course. We'll explore the advantages and disadvantages of TPUs in various scenarios and compare different TPU accelerators to help you choose the right fit. You'll learn strategies to maximize performance and efficiency for your AI models and understand the significance of GPU/TPU interoperability for flexible machine learning workflows. Through engaging content and practical demos, we'll guide you step-by-step in leveraging TPUs effectively.

Pelajari lebih lanjut

Curious about the powerful hardware behind AI? This course breaks down performance-optimized AI computers, showing you why they're so important. We'll explore how CPUs, GPUs, and TPUs make AI tasks super fast, what makes each one unique, and how AI software gets the most out of them. By the end, you'll know exactly how to pick the right compute for your AI projects, helping you make smart choices for your AI workkoads.

Pelajari lebih lanjut

Ready to get started with AI Hypercomputers? This course makes it easy! We'll cover the basics of what they are and how they help AI with AI workloads. You'll learn about the different components inside a hypercomputer, like GPUs, TPUs, and CPUs, and discover how to pick the right deployment approach for your needs.

Pelajari lebih lanjut

Agen AI Generatif: Mentransformasi Organisasi Anda adalah kursus kelima dan terakhir dari jalur pembelajaran Generative AI Leader. Kursus ini membahas cara organisasi menggunakan agen AI generatif kustom untuk membantu mengatasi tantangan bisnis tertentu. Anda akan mendapatkan praktik langsung dalam membangun agen AI generatif dasar, sambil mempelajari komponen agen ini, seperti model, loop penalaran, dan alat.

Pelajari lebih lanjut

Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda adalah kursus keempat dari jalur pembelajaran Generative AI Leader. Kursus ini memperkenalkan aplikasi AI generatif Google, seperti Gemini untuk Workspace dan NotebookLM. Kursus ini memandu Anda memahami konsep seperti grounding, retrieval augmented generation, menyusun perintah yang efektif, dan membangun alur kerja otomatis.

Pelajari lebih lanjut

AI Generatif: Memahami Lanskap adalah kursus ketiga dari alur pembelajaran Generative AI Leader. AI generatif mengubah cara kita bekerja dan berinteraksi dengan dunia di sekitar kita. Namun, sebagai seorang pemimpin, bagaimana Anda dapat memanfaatkan kekuatan AI untuk mendorong hasil bisnis yang nyata? Dalam kursus ini, Anda akan mempelajari berbagai lapisan dalam membangun solusi AI generatif, penawaran Google Cloud, dan faktor yang perlu dipertimbangkan saat memilih solusi.

Pelajari lebih lanjut

AI Generatif: Memahami Konsep Dasar adalah kursus kedua dari alur pembelajaran Generative AI Leader. Dalam kursus ini, Anda akan mempelajari konsep dasar AI generatif. Anda akan mempelajari perbedaan antara AI, ML, dan AI generatif serta mempelajari bagaimana berbagai jenis data memungkinkan AI generatif mengatasi tantangan bisnis. Anda juga akan mendapatkan insight tentang strategi Google Cloud untuk mengatasi keterbatasan model dasar dan tantangan utama dalam pengembangan dan deployment AI yang bertanggung jawab dan aman.

Pelajari lebih lanjut

AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.

Pelajari lebih lanjut

Aplikasi AI generatif dapat mewujudkan pengalaman pengguna baru yang hampir tidak dimungkinkan sebelum ditemukannya model bahasa besar (LLM). Sebagai developer aplikasi, bagaimana cara menggunakan AI generatif untuk membangun aplikasi yang menarik dan canggih di Google Cloud? Dalam kursus ini, Anda akan mempelajari aplikasi AI generatif dan cara Anda dapat menggunakan desain perintah serta retrieval-augmented generation (RAG) untuk membangun aplikasi yang canggih menggunakan LLM. Anda akan mempelajari arsitektur siap produksi yang dapat digunakan untuk aplikasi AI generatif dan Anda akan membangun aplikasi chat LLM berbasis RAG.

Pelajari lebih lanjut

Dapatkan badge keahlian tingkat menengah dengan menyelesaikan kursus Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI, tempat Anda akan belajar cara menggunakan platform Vertex AI Google Cloud, AutoML, dan layanan pelatihan kustom untuk melatih, mengevaluasi, menyesuaikan, menjelaskan, serta men-deploy model machine learning. Kursus badge keahlian ini diperuntukkan bagi Data Scientist dan Engineer Machine Learning profesional. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan Badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Membuat Model ML dengan BigQuery ML untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengevaluasi model machine learning dengan BigQuery ML untuk membuat prediksi data. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Complete the intermediate Manage Kubernetes in Google Cloud skill badge course to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques.

Pelajari lebih lanjut

This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.

Pelajari lebih lanjut

This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

Dalam kursus tingkat pemula ini, Anda akan mempelajari alur kerja Analisis Data di Google Cloud dan alat yang dapat Anda gunakan untuk mengeksplorasi, menganalisis, dan memvisualisasikan data, serta membagikan temuan Anda dengan para pemangku kepentingan. Dengan menggunakan studi kasus serta lab interaktif, materi, dan kuis/demo, kursus ini akan mendemonstrasikan cara menghasilkan data bersih hingga visualisasi dan dasbor yang menghasilkan dampak dari set data mentah. Entah Anda sudah bekerja dengan data dan ingin mempelajari cara sukses di Google Cloud, atau ingin mengembangkan karier Anda, kursus ini akan membantu Anda memulai. Hampir semua orang yang melakukan atau menggunakan analisis data dalam pekerjaan mereka dapat mengambil manfaat dari kursus ini.

Pelajari lebih lanjut

Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.

Pelajari lebih lanjut

Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.

Pelajari lebih lanjut

This Course is utilized to certify completion of The Skills Challenge at Next 2025.

Pelajari lebih lanjut

Kursus ini memperkenalkan konsep responsible AI dan prinsip AI. Di dalamnya tercakup teknik untuk secara praktis mengidentifikasi keadilan dan bias serta memitigasi bias dalam praktik AI/ML. Kursus ini juga mengeksplorasi metode dan alat praktis untuk menerapkan praktik terbaik Responsible AI menggunakan produk Google Cloud dan alat open source.

Pelajari lebih lanjut

Kursus ini memperkenalkan topik penting tentang privasi dan keamanan AI. Kursus ini mengeksplorasi metode dan alat praktis untuk menerapkan rekomendasi praktik privasi dan keamanan AI melalui penggunaan produk dan alat open source Google Cloud.

Pelajari lebih lanjut

Kursus ini membekali para praktisi machine learning dengan alat, teknik, dan praktik terbaik penting untuk mengevaluasi model AI generatif dan prediktif. Evaluasi model adalah disiplin ilmu yang sangat penting untuk memastikan sistem ML memberikan hasil yang andal, akurat, dan berperforma tinggi dalam produksi. Peserta akan mendapatkan pemahaman yang mendalam mengenai berbagai metrik evaluasi, metodologi, dan penerapannya yang sesuai di berbagai jenis model dan tugas. Kursus ini akan berfokus pada tantangan unik yang dibuat oleh model AI generatif dan memberikan strategi untuk mengatasinya secara efektif. Dengan memanfaatkan platform Vertex AI di Google Cloud, para peserta akan belajar cara mengimplementasikan proses evaluasi yang kuat untuk melakukan pemilihan, pengoptimalan, dan pemantauan berkelanjutan pada model.

Pelajari lebih lanjut

Kursus ini memperkenalkan konsep penafsiran dan transparansi AI. Kursus ini membahas pentingnya transparansi AI bagi developer dan engineer. Kursus ini juga mengeksplorasi metode dan alat praktis untuk membantu mencapai penafsiran dan transparansi, baik dalam model data maupun AI.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Pelajari lebih lanjut

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Pelajari lebih lanjut

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Pelajari lebih lanjut

This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

Pelajari lebih lanjut

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Pelajari lebih lanjut

Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.

Pelajari lebih lanjut

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Pelajari lebih lanjut