Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda menggunakan produk dan layanan Google untuk mengembangkan, menguji, men-deploy, dan mengelola aplikasi. Dengan bantuan Gemini, Anda belajar cara mengembangkan dan membangun aplikasi web, memperbaiki error dalam aplikasi, mengembangkan pengujian, dan mengkueri data. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan siklus proses pengembangan software (SDLC). Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.
Kursus ini menunjukkan cara menggunakan model AI/ML untuk tugas-tugas AI generatif di BigQuery. Melalui kasus penggunaan praktis yang melibatkan pengelolaan hubungan pelanggan (CRM), Anda akan mempelajari alur kerja pemecahan masalah bisnis dengan model Gemini. Untuk memudahkan pemahaman, kursus ini juga menyediakan panduan langkah demi langkah melalui solusi coding menggunakan kueri SQL dan notebook Python.
Selesaikan badge keahlian pengantar Panduan Awal Menggunakan Dataplex untuk menunjukkan keterampilan dalam hal berikut: membuat aset Dataplex, membuat jenis aspek, dan menerapkan aspek ke entri di Dataplex.
Dapatkan badge keahlian dengan menyelesaikan Quest Membuat Data Lake Aman di Cloud Storage. Di Quest ini, Anda akan menggunakan Cloud Storage, IAM, serta Dataplex secara bersamaan untuk membuat data lake yang aman di Google Cloud.
Selesaikan badge keahlian pengantar Mendapatkan Insight dari Data BigQuery untuk menunjukkan keterampilan dalam hal berikut: menulis kueri SQL, membuat kueri tabel publik, memuat sampel data ke dalam BigQuery, memecahkan masalah error sintaksis umum dengan validator kueri di BigQuery, dan membuat laporan di Looker Studio dengan menghubungkannya ke data BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Kursus ini mengeksplorasi Gemini in BigQuery, yakni paket fitur yang didukung AI untuk membantu alur kerja data ke AI. Paket fitur ini meliputi eksplorasi dan persiapan data, pembuatan kode dan pemecahan masalah, serta penemuan dan visualisasi alur kerja. Melalui penjelasan konseptual, kasus penggunaan praktis, dan lab interaktif, kursus ini akan membantu para praktisi data dalam meningkatkan produktivitas mereka dan mempercepat pipeline pengembangan.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
Dalam kursus ini, Anda akan belajar tentang data engineering on Google Cloud, peran dan tanggung jawab data engineer, dan bagaimana hal tersebut terhubung dengan penawaran yang disediakan oleh Google Cloud. Anda juga akan mempelajari cara untuk mengatasi tantangan terkait data engineering.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud DevOps Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
The goals at the end of this course are to be able to articulate to customers when and why they should use Looker’s multistage development framework and to share high-level ways to promote LookML code and content across multiple Looker instances.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Earn a skill badge by completing the Secure BigLake Data quest, where you use IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn a skill badge by completing the Tag and Discover BigLake Data quest, where you use BigQuery, BigLake, and Data Catalog within Dataplex to create, tag, and discover BigLake tables. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Selesaikan badge keahlian tingkat menengah Membuat Model ML dengan BigQuery ML untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengevaluasi model machine learning dengan BigQuery ML untuk membuat prediksi data. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.
Dalam kursus tingkat pemula ini, Anda akan mempelajari alur kerja Analisis Data di Google Cloud dan alat yang dapat Anda gunakan untuk mengeksplorasi, menganalisis, dan memvisualisasikan data, serta membagikan temuan Anda dengan para pemangku kepentingan. Dengan menggunakan studi kasus serta lab interaktif, materi, dan kuis/demo, kursus ini akan mendemonstrasikan cara menghasilkan data bersih hingga visualisasi dan dasbor yang menghasilkan dampak dari set data mentah. Entah Anda sudah bekerja dengan data dan ingin mempelajari cara sukses di Google Cloud, atau ingin mengembangkan karier Anda, kursus ini akan membantu Anda memulai. Hampir semua orang yang melakukan atau menggunakan analisis data dalam pekerjaan mereka dapat mengambil manfaat dari kursus ini.
Welcome to Migrate Workflows, where we discuss how to migrate Spark and Hadoop tasks and workflows to Google Cloud.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
This course shows learners the benefits of using Google Cloud to stream and broadcast content. The course provides a high-level overview of the infrastructure required for streaming and broadcasting.
Welcome to Intro to Data Lakes, where we discuss how to create a scalable and secure data lake on Google Cloud that allows enterprises to ingest, store, process, and analyze any type or volume of full fidelity data.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Dapatkan badge keahlian dengan menyelesaikan kursus Introduction to Generative AI, Introduction to Large Language Models, dan Introduction to Responsible AI. Dengan berhasil menyelesaikan kuis akhir, Anda membuktikan pemahaman Anda tentang konsep dasar AI generatif. Badge keahlian adalah badge digital yang diberikan oleh Google Cloud sebagai pengakuan atas pengetahuan Anda tentang produk dan layanan Google Cloud. Pamerkan badge keahlian Anda dengan menampilkan profil Anda kepada publik dan menambahkannya ke profil media sosial Anda.
Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
This is the second Quest in a two-part series on Google Cloud billing and cost management essentials. This Quest is most suitable for those in a Finance and/or IT related role responsible for optimizing their organization’s cloud infrastructure. Here you'll learn several ways to control and optimize your Google Cloud costs, including setting up budgets and alerts, managing quota limits, and taking advantage of committed use discounts. In the hands-on labs, you’ll practice using various tools to control and optimize your Google Cloud costs or to influence your technology teams to apply the cost optimization best practices.
In this course, you will receive technical training for Enterprise Data Warehouses solutions using BigQuery based on the best practices developed internally by Google’s technical sales and services organizations. The course will also provide guidance and training on key technical challenges that can arise when migrating existing Enterprise Data Warehouses and ETL pipelines to Google Cloud. You will get hands-on experience with real migration tasks, such as data migration, schema optimization, and SQL Query conversion and optimization. The course will also cover key aspects of ETL pipeline migration to Dataproc as well as using Pub/Sub, Dataflow, and Cloud Data Fusion, giving you hands-on experience using all of these tools for Data Warehouse ETL pipelines.
In this course, you explore the four components that make up the BigQuery Migration Service. They are Migration Assessment, SQL Translation, Data Transfer Service, and Data Validation. You will use each of these tools to perform a migration using to BigQuery.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.
Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.
Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.
Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.
Kursus Penjelajah AI Generatif - Vertex AI adalah sekumpulan lab yang membahas cara menggunakan AI Generatif di Google Cloud. Melalui lab ini, Anda akan mempelajari cara menggunakan model dalam rangkaian Vertex AI PaLM API, termasuk text-bison, chat-bison, dan textembedding-gecko. Anda juga akan mempelajari desain perintah, praktik terbaik, serta cara menggunakannya untuk pencarian ide, klasifikasi teks, ekstraksi teks, peringkasan teks, dan banyak lagi. Anda juga akan mempelajari cara menyesuaikan model dasar dengan melatihnya melalui pelatihan kustom Vertex AI dan men-deploy-nya ke endpoint Vertex AI.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.
Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
This course provides comprehensive skills on VM migration, from the initial assessment through the final implementation through presentations, demonstrations, and whiteboard session.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Bukan rahasia lagi bahwa machine learning adalah salah satu bidang yang berkembang paling cepat di ranah teknologi, dan Google Cloud Platform telah berperan penting dalam memajukan pengembangannya. Dengan berbagai API, GCP memiliki alat untuk hampir semua tugas machine learning. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan machine learning sebagaimana diterapkan pada pemrosesan bahasa, melalui serangkaian lab yang akan memungkinkan Anda mengekstrak entity dari teks, melakukan analisis sentimen dan sintaksis, serta menggunakan Speech to Text API untuk melakukan transkripsi.
Ingin membangun model ML dalam hitungan menit, bukan jam, hanya dengan menggunakan SQL? BigQuery ML memperluas akses machine learning dengan memungkinkan analis data membuat, melatih, mengevaluasi, dan memprediksi sesuatu dengan model machine learning menggunakan alat serta keterampilan SQL yang ada. Dalam rangkaian lab ini, Anda akan bereksperimen dengan beragam jenis model dan mempelajari ciri-ciri model yang baik.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.
This course identifies best practices for migrating data warehouses to BigQuery and the key skills required to perform successful migration.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.
This course explores the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataproc.
This course explores how to implement a streaming analytics solution using Pub/Sub.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
Actifio GO for Google Cloud is a SaaS offering which enables powerful enterprise class backup and recovery for Google Cloud resident and on-premises workloads. Actifio now supports backup, disaster recovery and rapid database cloning of Oracle on Bare Metal Solution on Google Cloud besides other enterprise workloads including SAP HANA, SQL Server, and others. This course provides a deep dive into at the preparation and deployment of the Actifio GO solution and its constituent components. Each module contains demos and explanations of each component. The Actifio GO training was originally designed for and only made available to Google Teams, however we’ve recognized how beneficial it would be for our Partners and are now offering our Partners exclusive access to the Actifio training and products, so they can benefit from the demos and best practices and bring them to their Google Cloud Customers.
Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
This course enables partners to help customers extend their on-premises VMware environments to Google Cloud using Google Cloud VMware Engine. Partners will learn how to architect Google Cloud VMware Engine migration solutions that allow customers to move virtual machines to the cloud with minimal risk. The course also instructs partners on how to solve real-world VMware integration and migration problems.
Welcome to Design in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on schema design.
This course explores the Geographic Information Systems (GIS), GIS Visualization, and machine learning enhancements to BigQuery.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.
Certificate Authority Service is a highly-available, scalable Google Cloud service. This course covers how Certificate Authority Service enables IT and security teams to simplify and automate the deployment, management, and security of private certificate authorities (CA) while staying in control of their private keys.
This course further explores SQL Server on Google Cloud.
This course provides an overview of Network Monitoring and Troubleshooting on Google Cloud.
Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.
DORA (DevOps Research & Assessment) is a research program, an assessment tool, a report publisher, and more. Together, these products create a compelling customer story that defines the industry standard for successful DevOps and technology transformation, and provides personalized steps to accelerate the customer journey. DORA enables Googlers and Partners to bring DevOps research and practices to Google Cloud Customers. This course provides an introduction to DORA and a guide on how to successfully complete a DORA assessment for your customer. Engaging customers in DORA assessment provides invaluable insights into the customer’s organization, and helps you better support your customer. The DORA training was originally designed for and only made available to Google Teams, however we’ve recognized how beneficial it would be for our Partners and are now offering our Partners exclusive access to the DORA training and products, so they can benefit from DORA’s research and practices …
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
This course provided technical training in Google Cloud Dataflow, the foundational pillar of Google Cloud's streaming analytics solution. This training is intended for Google Cloud technical experts that are looking to further their understanding of Dataflow to advance sales-related technical evaluations, customer implementations, technical support, and data processing applications. This course explores topics related to Dataflow, including: Apache Beam SDK Google Cloud Dataflow Runner Autoscaling Logic Sources / Sinks Schemas / Dataflow SQL Dynamic Work RebalancingMonitoring, Troubleshooting, and Optimization Testing and CI/CD
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.
This course explores how to implement a streaming analytics solution using Dataflow and BigQuery.
Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Kursus pengantar ini unik dibandingkan penawaran kursus lainnya. Semua lab dalam kursus ini telah diseleksi untuk membekali profesional IT dengan praktik langsung terkait berbagai topik dan layanan yang muncul di Sertifikasi Associate Cloud Engineer yang Tersertifikasi Google Cloud. Dari IAM, networking, hingga deployment Kubernetes Engine, kursus ini terdiri atas beberapa lab khusus yang akan menguji pengetahuan Anda terkait Google Cloud. Perlu diketahui bahwa meskipun praktik dalam lab akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga meninjau panduan ujian dan referensi persiapan lainnya yang tersedia.
Kubernetes adalah sistem orkestrasi container paling populer, dan Google Kubernetes Engine dirancang secara khusus untuk mendukung deployment Kubernetes terkelola di Google Cloud. Dalam kursus tingkat lanjut ini, Anda akan mendapatkan praktik langsung dalam mengonfigurasi Image Docker, container, serta men-deploy aplikasi Kubernetes Engine yang sepenuhnya lengkap dan siap produksi. Kursus ini akan mengajari Anda keterampilan praktis yang diperlukan untuk mengintegrasikan orkestrasi container ke dalam alur kerja Anda sendiri. Apakah Anda sedang mencari challenge lab interaktif untuk menunjukkan keterampilan Anda dan menguji pengetahuan yang dimiliki? Setelah menyelesaikan kursus ini, selesaikan Challenge Lab tambahan di akhir kursus Men-deploy Aplikasi Kubernetes di Google Cloud untuk menerima badge digital eksklusif Google Cloud.
Jika Anda adalah developer cloud pemula yang mencari praktik langsung di luar Google Cloud Essentials, kursus ini cocok untuk Anda. Anda akan mendapatkan pengalaman praktis melalui lab yang mendalami Cloud Storage dan layanan aplikasi utama lainnya seperti Monitoring dan Cloud Functions. Anda akan mengembangkan keahlian berharga yang dapat diterapkan untuk inisiatif Google Cloud apa pun.
In this Quest, the experienced user of Google Cloud will learn how to describe and launch cloud resources with Terraform, an open source tool that codifies APIs into declarative configuration files that can be shared amongst team members, treated as code, edited, reviewed, and versioned. In these nine hands-on labs, you will work with example templates and understand how to launch a range of configurations, from simple servers, through full load-balanced applications.
Quest level dasar ini berbeda dengan penawaran Qwiklabs lainnya. Semua lab yang termasuk dalam level ini telah diseleksi untuk membekali profesional IT dengan praktik langsung tentang berbagai topik dan layanan yang diujikan dalam Sertifikasi Google Cloud Certified Professional Cloud Architect . Dari IAM, hingga jaringan, dan penerapan Kubernetes Engine, quest ini tersusun atas sejumlah lab spesifik yang akan menguji pengetahuan Anda tentang GCP. Harap diketahui bahwa, meskipun praktik dengan lab ini akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga mempelajari panduan ujian serta referensi persiapan lain yang tersedia.
Dalam quest level pendahuluan ini, Anda akan mendapatkan praktik langsung dengan aneka fitur dan layanan dasar Google Cloud Platform. Dasar-Dasar GCP adalah Quest pertama yang direkomendasikan bagi peserta kursus Google Cloud—Anda dapat memulai dengan pengetahuan yang minim atau tanpa pengetahuan sama sekali tentang cloud, dan selesai dengan pengalaman praktis yang dapat diterapkan pada project GCP pertama Anda. Mulai dari menulis perintah Cloud Shell dan menerapkan mesin virtual pertama Anda, hingga menjalankan aplikasi di Kubernetes Engine atau dengan load balancing, Dasar-Dasar GCP merupakan pengenalan terbaik pada fitur-fitur dasar platform cloud. Setiap lab disertai video berdurasi 1 menit yang akan memandu Anda memahami berbagai konsep penting.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.