Gabung Login

Terapkan keterampilan Anda di Konsol Google Cloud

Tony Ng

Menjadi anggota sejak 2021

Silver League

17185 poin
Machine Learning Operations (MLOps): Getting Started Earned Jul 3, 2024 EDT
Recommendation Systems on Google Cloud Earned Jun 29, 2024 EDT
Natural Language Processing on Google Cloud Earned Mei 19, 2024 EDT
Machine Learning in the Enterprise Earned Apr 18, 2024 EDT
Feature Engineering Earned Mar 10, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Feb 3, 2024 EST
Launching into Machine Learning Earned Jan 7, 2024 EST
Pengantar Pembuatan Gambar Earned Jun 4, 2023 EDT
Mekanisme Atensi Earned Jun 4, 2023 EDT
Model Transformer dan Model BERT Earned Jun 4, 2023 EDT
[Accelerate 2022]: TechCon Lab Bash 2022 Earned Jan 14, 2022 EST

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Pelajari lebih lanjut

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Pelajari lebih lanjut

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Pelajari lebih lanjut

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Pelajari lebih lanjut

Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.

Pelajari lebih lanjut

Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.

Pelajari lebih lanjut

Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.

Pelajari lebih lanjut

Welcome to the TechCon Lab Bash 2022 hands-on lab event! Below, you are presented with a series of labs ranging from Level 100 to Level 400. Level 100 labs are video walkthroughs of the lab content. Level 200 labs are traditional Learning Labs which provide you with step-by-step instructions. Level 300 are Challenge Labs which provide you with limited instructions and a hands-on technical scenario to solve. Level 400 are break/fix labs where you must identify the issues in the environment and resolve them.

Pelajari lebih lanjut