JIH-CHENG CHANG
Participante desde 2018
Liga Prata
6600 pontos
Participante desde 2018
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
Neste curso, o usuário experiente do Google Cloud vai aprender a descrever e lançar recursos de nuvem com o Terraform, uma ferramenta de código aberto que transforma APIs em arquivos de configuração declarativos, que podem ser compartilhados entre os membros da equipe, tratados como código, editados, revisados e versionados. Nestes laboratórios práticos, você vai trabalhar com modelos de exemplo e aprenderá a lançar uma variedade de configurações, desde servidores simples até aplicativos com balanceamento de carga completo.
In this quest you will get hands-on experience writing infrastructure as code with Terraform.
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Quais são as práticas recomendadas para implementar machine learning no Google Cloud? O que é Vertex AI e como é possível usar a plataforma para criar, treinar e implantar modelos de machine learning do AutoML com rapidez e sem escrever nenhuma linha de código? O que é machine learning e que tipos de problema ele pode resolver? O Google pensa em machine learning de uma forma um pouco diferente. Para nós, o processo de ML é sobre fornecer uma plataforma unificada para conjuntos de dados gerenciados, como uma Feature Store, uma forma de criar, treinar e implantar modelos de machine learning sem escrever nenhuma linha de código. Além disso, o ML também é sobre a habilidade de rotular dados, criar notebooks do Workbench usando frameworks (como TensorFlow, SciKit Learn, Pytorch e R) e muito mais. A plataforma Vertex AI também inclui a possibilidade de treinar modelos personalizados, criar pipelines de componente e realizar previsões em lote e on-line. Também falamos sobre as cinco fas…
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
O terceiro curso desta série é "Achieving Advanced Insights with BigQuery". Para continuar desenvolvendo seus conhecimentos sobre SQL, vamos aprender a usar funções avançadas e dividir uma consulta completa em etapas gerenciáveis. Você também vai conhecer a arquitetura interna do BigQuery (armazenamento fragmentado com base em colunas) e tópicos avançados do SQL, como campos aninhados e repetidos usando matrizes e structs. Por fim, vamos aprender a otimizar consultas para melhorar o desempenho e a proteger seus dados com visualizações autorizadas. Depois de concluir este curso, inscreva-se no "Applying Machine Learning to Your Data with Google Cloud".
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Big data, machine learning e dados científicos? Parece uma combinação perfeita. Nesta Quest de nível avançado, você terá experiência prática nos serviços do GCP, como o Big Query, o Dataproc e o Tensorflow, usando conjuntos de dados científicos reais. Em Scientific Data Processing, você ganhará experiência em tarefas como análise de dados de terremotos e agregação de imagens de satélites. Assim, você expandirá as habilidades em big data e machine learning e poderá solucionar seus problemas em diversas disciplinas científicas.
Esta é a primeira de duas Quests de laboratórios práticos e é derivada dos exercícios do livro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado pela O'Reilly Media, Inc. Nesta primeira Quest, que aborda o capítulo 8, você poderá praticar todos os aspectos de ingestão, preparação, processamento, consulta, exploração e visualização de conjuntos de dados usando as ferramentas e os serviços do Google Cloud Platform.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Quer criar modelos de ML em minutos em vez de horas usando apenas SQL? O BigQuery ML democratiza o machine learning ao permitir que analistas de dados criem, treinem, avaliem e façam previsões usando habilidades e ferramentas de SQL que eles já têm. Nesta série de laboratórios, você vai fazer alguns testes e saber quais são as características de um bom modelo.
In this introductory level Quest you will gain practical experience on the fundamentals of sports data science using BigQuery. Start your journey by creating a soccer dataset in BigQuery by importing CSV and JSON files. Harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data and evaluate the impressiveness of World Cup goals.
Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".
Conclua o selo de habilidade intermediário Implantar aplicativos do Kubernetes no Google Cloud para demonstrar que você é capaz de: configurar e criar imagens de contêiner do Docker, criar e gerenciar clusters do Google Kubernetes Engine (GKE), utilizar o kubectl para o gerenciamento eficiente de clusters e implantar aplicativos do Kubernetes com a prática de entrega contínua (CD).
Neste curso, conhecemos os desafios mais comuns enfrentados pelos analistas de dados e como resolvê-los com as ferramentas de big data no Google Cloud. Ao longo do caminho, você vai aprender um pouco de SQL e se familiarizar com o uso do BigQuery e do Dataprep para analisar e transformar seus conjuntos de dados. Este é o primeiro curso da série From Data to Insights with Google Cloud. Depois de concluir este curso, inscreva-se no curso Creating New BigQuery Datasets and Visualizing Insights.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
O Kubernetes é o sistema de orquestração de contêineres mais conhecido, e o Google Kubernetes Engine foi criado especificamente para oferecer suporte a implantações gerenciadas do Kubernetes no Google Cloud. Neste curso de nível avançado, você vai praticar a configuração de contêineres e imagens Docker e a implantação de aplicativos completos do Kubernetes Engine. Você também vai aprender as habilidades práticas necessárias para integrar a orquestração de contêineres ao próprio seu fluxo de trabalho. Está procurando um laboratório com desafios práticos para demonstrar suas habilidades e validar seu conhecimento? Quando terminar o curso, faça o laboratório extra com desafio ao fim do curso Implantar aplicativos do Kubernetes no Google Cloud para receber um selo digital exclusivo do Google Cloud.
Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.
Quer transformar seus dados de marketing em insights e criar painéis? Reúna todos os dados em um único lugar para fazer análises em grande escala e criar modelos. Use o BigQuery e aprenda a fazer consultas para gerar insights repetíveis, escalonáveis e valiosos sobre seus dados. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura nem precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Além disso, ele permite que você se concentre na análise dos dados para encontrar insights relevantes.