Partecipa Accedi

Applica le tue competenze nella console Google Cloud

Goh Zhen Rong

Membro dal giorno 2023

Machine learning in azienda Earned gen 17, 2024 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned gen 2, 2024 EST
Machine Learning Operations (MLOps): Getting Started Earned gen 1, 2024 EST
Recommendation Systems on Google Cloud Earned dic 31, 2023 EST
Natural Language Processing on Google Cloud Earned dic 26, 2023 EST
Production Machine Learning Systems Earned dic 23, 2023 EST
Feature engineering Earned dic 19, 2023 EST
Crea, addestra ed esegui il deployment di modelli ML tramite Keras su Google Cloud Earned dic 17, 2023 EST

Questo corso adotta un approccio pratico reale al flusso di lavoro ML attraverso un case study. Un team ML è chiamato a rispondere a numerosi requisiti aziendali e ad affrontare vari casi d'uso ML. Deve comprendere gli strumenti necessari per la gestione e la governance dei dati e considerare l'approccio migliore per la pre-elaborazione dei dati. Al team vengono presentate tre opzioni per creare modelli ML per due casi d'uso. Il corso spiega perché il team utilizzerà AutoML, BigQuery ML o l'addestramento personalizzato per raggiungere i propri obiettivi.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Scopri di più

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Scopri di più

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Scopri di più

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Scopri di più

Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.

Scopri di più

Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.

Scopri di più