Angga Pranata
Participante desde 2024
Liga Diamante
21045 pontos
Participante desde 2024
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda desenvolvedores a criar aplicativos. Você também vai aprender a usar os comandos do Gemini para explicar código, recomendar serviços do Google Cloud e gerar código para seus aplicativos. No laboratório prático, você vai entender como o Gemini melhora o fluxo de trabalho de implantação de aplicativos. A Duet AI agora é o Gemini, nosso modelo de última geração.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este curso final da série analisa os serviços gerenciados de Big Data, machine learning e os benefícios dela, e como comprovar suas habilidades no Google Cloud ganhando selos de habilidade.
Usar a capacidade de computação em grande escala para reconhecer padrões e "ler" imagens é uma das tecnologias fundamentais de IA, desde carros com condução automática até reconhecimento facial. O Google Cloud Platform oferece velocidade e precisão de nível internacional, com sistemas que podem ser usados ao chamar APIs. Com eles e várias outras APIs, o GCP tem praticamente uma ferramenta para cada job de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning em processamento de imagens com laboratórios que permitem rotular imagens, detectar rostos e pontos de referência, extrair, analisar e traduzir texto de imagens.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.
Não é novidade que o machine learning é um dos campos que mais cresce na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning ao processamento de linguagem em laboratórios que permitem extrair entidades de textos e realizar análises sintáticas e de sentimento, além de usar a API Speech-to-Text para transcrição.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
O curso Descobrindo a IA Generativa - Vertex AI é uma coleção de laboratórios sobre como usar a IA generativa no Google Cloud. Nos laboratórios, você vai aprender como usar os modelos da família da API Vertex AI PaLM, incluindo text-bison, chat-bison, e textembedding-gecko. Você também vai aprender sobre design de comandos, práticas recomendadas, e como isso pode ser usado para gerar ideias, classificar, extrair e resumir textos e muito mais. Saiba também como ajustar um modelo de fundação com um treinamento personalizado no Vertex AI e implantá-lo em um endpoint do Vertex AI.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.