Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Ajeng CP

Date d'abonnement : 2021

Ligue d'Argent

4100 points
Data Science on the Google Cloud Platform Earned sept. 26, 2021 EDT
Scientific Data Processing Earned sept. 26, 2021 EDT
DEPRECATED Applied Data: Blockchain Earned sept. 26, 2021 EDT
Data Catalog Fundamentals Earned sept. 25, 2021 EDT
Dégager des insights des données BigQuery Earned sept. 25, 2021 EDT
BigQuery for Marketing Analysts Earned sept. 25, 2021 EDT
Créer des modèles de ML avec BigQuery ML Earned sept. 25, 2021 EDT
Building Codeless Pipelines on Cloud Data Fusion Earned sept. 24, 2021 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned sept. 23, 2021 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned sept. 23, 2021 EDT
Google Cloud Essentials Earned sept. 23, 2021 EDT

Cette quête est la première d'une série de deux comprenant des ateliers pratiques tirés d'exercices disponibles dans l'ouvrage Data Science on Google Cloud Platform de Valliappa Lakshmanan, publié par O'Reilly Media, Inc. Dans cette première quête, qui couvre les chapitres 1 à 8, vous découvrez tous les aspects de l'ingestion, de la préparation, du traitement, de l'interrogation, de l'exploration et de la visualisation des ensembles de données à l'aide des outils et des services de Google Cloud Platform.

En savoir plus

Big data, machine learning et données scientifiques ? Il semble que ce soit la combinaison parfaite. Dans cette quête avancée, vous allez vous familiariser avec des services GCP tels que Big Query, Dataproc et Tensorflow, que vous appliquerez à des cas utilisant des ensembles de données scientifiques réelles. En vous faisant acquérir de l'expérience avec des tâches telles que l'analyse des données sismiques et l'agrégation d'images satellites, le traitement de données scientifiques développera vos compétences dans le domaine du Big data et du machine learning, et vous aidera à résoudre les problèmes que vous rencontrez dans différentes disciplines scientifiques.

En savoir plus

Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.

En savoir plus

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

En savoir plus

Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Vous souhaitez générer des insights à partir de vos données marketing et créer des tableaux de bord ? Réunissez toutes vos données au même endroit afin d'effectuer des analyses à grande échelle et de créer des modèles. Apprenez à utiliser BigQuery et à interroger vos données pour créer des insights utiles, reproductibles et évolutifs. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.

En savoir plus

Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.

En savoir plus

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

En savoir plus

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

En savoir plus

Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.

En savoir plus