가입 로그인

Google Cloud 콘솔에서 기술 적용

Rahul Yadav

회원 가입일: 2023

골드 리그

27215포인트
Generative AI for Document Processing Earned 3월 17, 2025 EDT
Experimenting and Evaluating your Gen AI models Earned 3월 17, 2025 EDT
Google Cloud에서 생성형 AI 앱 만들기 Earned 2월 26, 2025 EST
Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기 Earned 2월 25, 2025 EST
Improving developer velocity with Gemini Code Assist Earned 10월 15, 2024 EDT
Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 Earned 10월 9, 2024 EDT
Vertex AI의 Gemini API로 생성형 AI 살펴보기 Earned 10월 8, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 10월 4, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned 10월 3, 2024 EDT
Custom Search with Embeddings in Vertex AI Earned 9월 30, 2024 EDT
벡터 검색 및 임베딩 Earned 9월 25, 2024 EDT
Implementing Generative AI with Vertex AI Earned 9월 25, 2024 EDT
이미지 캡셔닝 모델 만들기 Earned 9월 25, 2024 EDT
이미지 생성 소개 Earned 9월 25, 2024 EDT
Transformer 모델 및 BERT 모델 Earned 9월 25, 2024 EDT
인코더-디코더 아키텍처 Earned 9월 24, 2024 EDT
어텐션 메커니즘 Earned 9월 24, 2024 EDT
Generative AI Fundamentals Earned 9월 18, 2024 EDT
Text Prompt Engineering Techniques Earned 9월 13, 2024 EDT
Vertex AI Studio 소개 Earned 9월 12, 2024 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 9월 12, 2024 EDT
책임감 있는 AI 소개 Earned 9월 12, 2024 EDT
Generative AI for Business Leaders Earned 9월 11, 2024 EDT

Explore how to use AI to automate document processing tasks, such as classifying documents, extracting data from documents, and summarizing documents. Learn how to use the Document AI Workbench to create custom document extractors and summarizers. Upload documents, define fields, create versions, and call endpoints to get structured data and summaries back. Discover a new service called Document AI Warehouse, which is a fully managed service to search, store, govern, and manage documents and their extracted metadata. You will also learn about how it integrates with other Google Cloud services like Document AI, BigQuery, and Cloud Storage.

자세히 알아보기

Model experimentation and evaluation are critical steps in the journey to productionalize an LLM. This course introduces new tools that will help simplify these tasks.

자세히 알아보기

생성형 AI 애플리케이션은 대규모 언어 모델(LLM)이 발명되기 전에는 불가능에 가까웠던 새로운 사용자 경험을 만들 수 있습니다. 어떻게 하면 애플리케이션 개발자가 생성형 AI를 사용해 Google Cloud에서 강력한 대화형 앱을 빌드할 수 있을까요? 이 과정에서는 생성형 AI 애플리케이션에 대해 알아보고 프롬프트 설계 및 검색 증강 생성(RAG)을 사용해 LLM 기반의 강력한 애플리케이션을 빌드하는 방법을 학습합니다. 생성형 AI 애플리케이션에 사용할 수 있는 프로덕션 레디 아키텍처를 살펴보고 LLM 및 RAG 기반 채팅 애플리케이션을 빌드합니다.

자세히 알아보기

초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.

자세히 알아보기

Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.

자세히 알아보기

중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

중급 Vertex AI의 Gemini API로 생성형 AI 살펴보기 기술 배지 과정을 완료하여 텍스트를 생성하고, 향상된 콘텐츠 제작을 위해 이미지 및 동영상을 분석하고, Gemini API 내에서 함수 호출 기법을 적용하는 기술 역량을 입증하세요. 정교한 Gemini 기법을 활용하고, 멀티모달 콘텐츠 생성을 살펴보고, AI 기반 프로젝트의 기능을 확장하는 방법을 알아보세요.

자세히 알아보기

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

자세히 알아보기

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

자세히 알아보기

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

자세히 알아보기