参加 ログイン

Google Cloud コンソールでスキルを試す

Zhang Kevin

メンバー加入日: 2022

ゴールドリーグ

46192 ポイント
AI Infrastructure: Cloud GPUs Earned 10月 9, 2025 EDT
AI Infrastructure: Introduction to AI Hypercomputer Earned 10月 9, 2025 EDT
Extend Gemini Enterprise Assistant Capabilities Earned 10月 8, 2025 EDT
Create media search and media recommendations applications with AI Applications Earned 10月 8, 2025 EDT
Configure AI Applications to optimize search results Earned 10月 8, 2025 EDT
Create and maintain Vertex AI Search data stores Earned 10月 7, 2025 EDT
Create Data Stores for Gen AI Applications Earned 10月 7, 2025 EDT
Recommendations with AI Applications Earned 10月 6, 2025 EDT
Introduction to NotebookLM Earned 10月 6, 2025 EDT
Improve Vertex AI Search and Gemini Enterprise Search Results Earned 10月 6, 2025 EDT
Vertex AI Search and Gemini Enterprise Analytics Earned 10月 5, 2025 EDT
Vertex AI Search and Gemini Enterprise UI Configurations Earned 10月 5, 2025 EDT
Build search and recommendations applications with AI Applications Earned 10月 5, 2025 EDT
Introduction to AI Applications Earned 10月 5, 2025 EDT
Google Cloud で Terraform を使ってみる Earned 7月 21, 2025 EDT
Agentspace で知識の共有を加速させる Earned 3月 5, 2025 EST
クラウド アーキテクト向けの Gemini Earned 2月 8, 2025 EST
DevOps エンジニア向けの Gemini Earned 2月 8, 2025 EST
Introduction to Security in the World of AI Earned 2月 7, 2025 EST
GCC Tech Learning Packs - TPU/GPU - SME Academy Earned 1月 29, 2025 EST
開発者向けの責任ある AI: プライバシーと安全性 Earned 1月 27, 2025 EST
開発者向けの責任ある AI: 解釈可能性と透明性 Earned 1月 27, 2025 EST
発者向けの責任ある AI: 公平性とバイアス Earned 1月 27, 2025 EST
Google Cloud での生成 AI アプリの作成 Earned 1月 27, 2025 EST
ML Pipelines on Google Cloud - 日本語版 Earned 1月 25, 2025 EST
Vertex AI を使用した ML オペレーション(MLOps): モデルの評価 Earned 1月 25, 2025 EST
生成 AI のための ML オペレーション(MLOps) Earned 1月 24, 2025 EST
本番環境 ML システム Earned 1月 24, 2025 EST
特徴量エンジニアリング Earned 1月 23, 2025 EST
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 1月 21, 2025 EST
Vertex AI でノートブックを使用する Earned 1月 16, 2025 EST
Google Cloud における AI と ML の概要 Earned 1月 15, 2025 EST
Professional Machine Learning Engineer 学習ガイド Earned 1月 14, 2025 EST
Google Cloud におけるアプリ開発環境の設定 Earned 6月 3, 2024 EDT
Preparing for Your Professional Cloud Architect Journey - 日本語版 Earned 6月 2, 2024 EDT
責任ある AI の概要 Earned 5月 30, 2024 EDT
DEPRECATED Deploy Google Cloud Framework Data Foundation for SAP Earned 6月 14, 2023 EDT
Transformer モデルと BERT モデル Earned 5月 13, 2023 EDT
アテンション機構 Earned 5月 12, 2023 EDT
大規模言語モデルの概要 Earned 5月 12, 2023 EDT
生成 AI の概要 Earned 5月 12, 2023 EDT
How Google Does Machine Learning - 日本語版 Earned 4月 20, 2023 EDT
Create and Manage AlloyDB Instances Earned 4月 12, 2023 EDT
Google Kubernetes Engine を使用した構築: 基礎 Earned 2月 21, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 1月 29, 2023 EST
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 1月 29, 2023 EST
Google Cloud でのバッチデータ パイプラインの構築 Earned 1月 29, 2023 EST
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 1月 27, 2023 EST
Preparing for Your Professional Cloud Security Engineer Journey - 日本語版 Earned 1月 8, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 7月 22, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 7月 10, 2022 EDT
Professional Data Engineer の取得に向けた準備 Earned 7月 9, 2022 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 6月 17, 2022 EDT
重要な Google Cloud インフラストラクチャ: コアサービス Earned 6月 17, 2022 EDT
Google Kubernetes Engine の費用の最適化 Earned 6月 13, 2022 EDT
Google Cloud ネットワークの設定 Earned 6月 12, 2022 EDT
Google Cloud ネットワークの構築 Earned 6月 12, 2022 EDT
Google Cloud におけるロギングとモニタリング Earned 6月 10, 2022 EDT
信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス Earned 6月 9, 2022 EDT
Preparing for Your Professional Cloud Architect Journey - 日本語版 Earned 6月 9, 2022 EDT
重要な Google Cloud インフラストラクチャ: 基礎 Earned 6月 8, 2022 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 6月 8, 2022 EDT
Google Kubernetes Engine を使ってみる Earned 6月 8, 2022 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 5月 29, 2022 EDT

Curious about the powerful hardware behind AI? This course breaks down performance-optimized AI computers, showing you why they're so important. We'll explore how CPUs, GPUs, and TPUs make AI tasks super fast, what makes each one unique, and how AI software gets the most out of them. By the end, you'll know exactly how to pick the right compute for your AI projects, helping you make smart choices for your AI workkoads.

詳細

Ready to get started with AI Hypercomputers? This course makes it easy! We'll cover the basics of what they are and how they help AI with AI workloads. You'll learn about the different components inside a hypercomputer, like GPUs, TPUs, and CPUs, and discover how to pick the right deployment approach for your needs.

詳細

Complete the Extend Gemini Enterprise Assistant Capabilities skill badge to demonstrate your ability to extend Gemini Enterprise assistant's capabilities with actions, grounding with Google Search, and a conversational agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

Complete the Create media search and media recommendations applications with AI Applications skill badge to demonstrate your ability to create, configure, and access media search and recommendations applications using AI Applications. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Gemini Enterprise apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.

詳細

Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.

詳細

NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.

詳細

If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

詳細

AI Applications provides built-in analytics for your Vertex AI Search and Gemini Enterprise apps. Learn what metrics are tracked and how to view them in this course. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

詳細

Initial deployment of Vertex AI Search and Gemini Enterprise apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Gemini Enterprise apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

詳細

Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

詳細

このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。

詳細

Google が持つ検索と AI の専門知識を Agentspace と融合させましょう。Agentspace は、従業員が単一の検索バーでドキュメント ストレージ、メール、チャット、チケット発行システム、その他のデータソースから特定の情報を検索できるよう設計された企業向けのツールです。また、Agentspace アシスタントは、ブレインストーミング、調査、ドキュメントの概要作成、カレンダーの予定への同僚の招待といったアクションの実行を支援し、あらゆる種類の知識労働や共同作業を加速させます。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、管理者によるインフラストラクチャのプロビジョニングにどのように役立つかについて学習します。Gemini にプロンプトを入力して、インフラストラクチャの説明、GKE クラスタのデプロイ、既存のインフラストラクチャの更新についての情報を取得する方法を学びます。ハンズオン ラボでは、Gemini を使用することで GKE のデプロイ ワークフローがどのように向上するかを体験します。 Duet AI は、Google の次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、エンジニアによるインフラストラクチャの管理にどのように役立つかについて学習します。アプリケーション ログを検索して理解するように Gemini に指示する方法、GKE クラスタを作成する方法、ビルド環境の作成方法を調査する方法を学びます。ハンズオンラボでは、Gemini を使用することで DevOps ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

詳細

This is an opportunity for Technical Cloud Googlers to enhance their TPU/GPU skills and knowledge through a deep dive program covering the following focus areas/ individual tracks: TPU/GPU Networking GKE Expertise Slurm Expertise TPU/GPU Storage Best Practices Common transformer/LLM frameworks (Huggingface/triton/etc) Monitoring and logging for TPU/GPU    

詳細

このコースでは、AI のプライバシーと安全性に関する重要なトピックを紹介します。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して AI のプライバシーと安全性の推奨プラクティスを実装するための実践的な方法とツールを検証します。

詳細

このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。

詳細

このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。

詳細

生成 AI アプリケーションは、大規模言語モデル(LLM)の発明以前にはほぼ不可能であった、新しいユーザー エクスペリエンスを生み出すことができます。アプリケーション デベロッパーが Google Cloud 上で生成 AI を活用し、魅力的で強力なアプリを構築するにはどうすればよいでしょうか? このコースでは、生成 AI アプリケーションについて学びます。また、プロンプト設計と検索拡張生成(RAG)を使用して、LLM を活用した強力なアプリケーションを構築する方法についても学びます。さらに、生成 AI アプリケーションで使用できるプロダクション レディなアーキテクチャについて学び、LLM と RAG ベースのチャット アプリケーションを構築します。

詳細

このコースでは、Google Cloud で最先端の ML パイプラインに携わっている ML エンジニアおよびトレーナーたちから知識を吸収することができます。 最初のいくつかのモジュールで、ML パイプラインとメタデータの管理用 TensorFlow を基盤とする Google の本番環境向け機械学習プラットフォーム TensorFlow Extended(TFX)について説明します。パイプラインのコンポーネントについて、そして TFX を使用したパイプラインのオーケストレーションについて学習します。また、継続的インテグレーションと継続的デプロイを通じたパイプラインの自動化の方法と、ML メタデータの管理方法についても学習します。その後、焦点を変えて、TensorFlow、PyTorch、Scikit Learn、XGBoost などの複数の ML フレームワーク全体にわたる ML パイプラインの自動化と再利用の方法について説明します。 さらに、Google Cloud のもう 1 つのツール、Cloud Composer を継続的なトレーニング パイプラインのオーケストレーションに活用する方法についても学習します。最後は、MLflow を使用して機械学習の完全なライフサイクルを管理する方法の解説で締めくくります。

詳細

このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。

詳細

このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

このコースは、Vertex AI Notebooks に関する入門コースです。Vertex AI Notebooks は Jupyter ノートブックをベースとした環境であり、データの準備からモデルのデプロイとモニタリングに至るまで ML のワークフロー全体をサポートする統合プラットフォームを提供します。このコースでは、(1)Vertex AI Notebooks の種類とそれぞれの機能、(2)Vertex AI Notebooks の作成と管理の方法について説明します。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

このコースでは、PMLE(Professional Machine Learning Engineer)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握したうえで、また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

このコースでは、PCA(Professional Cloud Architect)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

Earn a skill badge by completing the Deploy Google Cloud Framework Data Foundation for SAP quest. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

Google Cloud で機械学習を実装する際のベスト プラクティスには何があるでしょうか。Vertex AI とは何であり、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイするにはどうすればよいでしょうか。機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。 Google では機械学習について独自の視点で考えています。マネージド データセット、特徴量ストア、そしてコードを 1 行も記述せずに迅速に機械学習モデルを構築、トレーニング、デプロイする手段を 1 つにまとめた統合プラットフォームを提供するとともに、データにラベル付けし、TensorFlow、SciKit Learn、Pytorch、R やその他のフレームワークを使用して Workbench ノートブックを作成できるようにすることが、Google の考える機械学習の在り方です。Google の Vertex AI プラットフォームでは、カスタムモデルをトレーニングしたり、コンポーネント パイプラインを構築したりすることもできます。さらに、オンライン予測とバッチ予測の両方を実施できます。このコースでは、候補となるユースケースを機械学習で学習できる形に変換する 5 つのフェーズについても説明し、これらのフェーズを省略しないことが重要である理由について論じます。最後に、機械学習によって増幅される可能性のあるバイアスの認識と、それを識別する方法について説明します。

詳細

Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.

詳細

このコース「Google Kubernetes Engine を使用した構築: 基礎」では、Google Cloud の全体像と基本的な考え方を確認した後、ソフトウェア コンテナを作成して管理する方法と Kubernetes のアーキテクチャについて説明します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースは、Professional Cloud Security Engineer(PCSE)認定試験への準備に役立ちます。受講者は、一連の講義、確認のための質問、理解度チェックを通じて試験内容についての理解を深め、準備を整えることができます。このコースを修了した暁には、受講者それぞれに独自のワークブックができあがるので、認定試験に向けてほかにどのような準備を行うべきかがわかるようになります。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

「Google Kubernetes Engine の費用の最適化」の中級スキルバッジを獲得すると、 マルチテナント クラスタの作成と管理、各 Namespace のリソース使用状況のモニタリング、 効率向上のためのクラスタと Pod の自動スケーリングの構成、最適なリソース配分のためのロード バランシングの設定、 アプリケーションの健全性と費用対効果を確保するための liveness プローブと readiness プローブの実装といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。

詳細

Google Cloud ネットワークの設定コースを修了してスキルバッジを獲得しましょう。 このコースでは、Google Cloud Platform で基本的なネットワーキング タスクを実行する方法を学習します。具体的には、カスタム ネットワークの作成、サブネット ファイアウォール ルールの追加、VM の作成、そして VM 同士が通信する際のレイテンシのテストについて学びます。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

このコースでは、Google Cloud のインフラストラクチャとアプリケーションのパフォーマンスをモニタリングして改善するための手法を学びます。 プレゼンテーション、デモ、ハンズオンラボ、実際の事例紹介を組み合わせて活用することにより、フルスタック モニタリング、リアルタイムでのログ管理と分析、本番環境でのコードのデバッグ、アプリケーション パフォーマンスのボトルネックのトレース、CPU とメモリ使用量のプロファイリングに関する経験を積むことができます。

詳細

このコースでは、実績ある設計パターンを利用して、信頼性と効率に優れたソリューションを Google Cloud で構築する方法を学習します。本コースは、Google Compute Engine を使用した構築 または Google Kubernetes Engine を使用した構築 のコースの続きで、これらのコースで取り上げているテクノロジーの実践経験があることを前提としています。参加者は、講義、設計アクティビティ、ハンズオンラボを通して、ビジネス要件と技術要件を定義し、バランスを取りながら、信頼性、可用性、安全性、費用対効果に優れた Google Cloud のデプロイを設計する方法を学びます。

詳細

このコースでは、PCA(Professional Cloud Architect)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細