Raj Uppadhyay
成为会员时间:2023
黄金联赛
52265 积分
成为会员时间:2023
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
完成 透過 Google Cloud Observability 監控及記錄系統狀態 技能徽章入門課程, 即可證明您具備下列技能:監控 Compute Engine 中的虛擬機器、 運用 Cloud Monitoring 監管多項專案、在 Cloud Functions 延伸應用監控和記錄功能、 建立和傳送自訂應用程式指標,以及根據自訂指標設定 Cloud Monitoring 快訊。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。
完成 使用 Gemini 和 Streamlit 開發生成式 AI 應用程式 技能徽章中階課程,即可證明您具備下列技能: 生成文字、透過 Python SDK 和 Gemini API 呼叫函式,以及運用 Cloud Run 部署 Streamlit 應用程式。 您將瞭解如何以不同方式透過提示請 Gemini 生成文字、使用 Cloud Shell 測試及疊代 Streamlit 應用程式,隨後封裝成 Docker 容器並在 Cloud Run 中部署。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。 完成這個課程及結業評量挑戰實驗室,即可取得技能徽章並與他人分享。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助分析客戶資料及預測產品銷售情形。您也會學習如何在 BigQuery 中使用客戶資料識別、分類及開發新客戶。透過使用實作研究室,您可以體驗 Gemini 如何改良資料分析和機器學習工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助管理員在 Google Cloud 佈建基礎架構。您將瞭解如何透過提示讓 Gemini 解釋基礎架構、部署 GKE 叢集,以及更新既有的基礎架構。在實作研究室中,您也會體驗到 Gemini 如何改良 GKE 的部署工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助網路工程師建立、更新及維護虛擬私有雲網路。您將瞭解如何透過提示讓 Gemini 為網路工作提供指引,獲得比搜尋結果更具體的資訊。在實作研究室中,您也會體驗到 Gemini 如何簡化 Google Cloud 虛擬私有雲網路的作業。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助您透過 Google Cloud 保護雲端環境和資源。您將學到如何將工作負載範例部署到 Google Cloud 中的環境,以及運用 Gemini 找出並修復安全性設定錯誤。在實作研究室中,您也會體驗到 Gemini 如何改良雲端安全防護機制。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助您透過 Google Cloud 使用 Google 產品和服務,開發、測試、部署及管理應用程式。有了 Gemini 的協助,您會學到如何開發和建構網頁應用程式、修正應用程式中的錯誤、開發測試及查詢資料。在實作研究室中,您也會體驗到 Gemini 如何改良軟體開發生命週期 (SDLC)。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助工程師透過 Google Cloud 管理基礎架構。您將學到如何透過提示讓 Gemini 尋找和瞭解應用程式記錄檔、建立 GKE 叢集,以及研究如何打造建構環境。在實作研究室中,您也會瞭解 Gemini 如何改良開發運作的工作流程。 Duet AI 已更名為 Gemini,是我們新一代的模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助開發人員透過 Google Cloud 建構應用程式。您將瞭解如何透過提示讓 Gemini 為您解釋程式碼內容、推薦 Google Cloud 服務,以及生成應用程式的程式碼。在實作研究室中,您也會體驗到 Gemini 如何改良應用程式的開發工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
完成「在 Google Cloud 使用 Terraform 建構基礎架構」技能徽章中階課程, 即可證明自己具備下列知識與技能:使用 Terraform 的基礎架構即程式碼 (IaC) 原則、運用 Terraform 設定佈建及管理 Google Cloud 資源、有效管理狀態 (本機和遠端),以及將 Terraform 程式碼模組化,以利重複使用和管理。 技能徽章課程透過實作實驗室和挑戰評量,檢驗學員對於特定產品的實作知識。完成課程或直接進行挑戰實驗室,即可取得徽章。 徽章可證明您的專業能力、提升專業形象,開創更多職涯發展機會。 已獲得的徽章會顯示在您的個人資料中。
In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.
完成 在 Google Cloud 實作 DevOps 工作流程 技能徽章中階課程, 即可證明您具備下列技能:使用 Cloud Source Repositories 建立 Git 存放區、 在 Google Kubernetes Engine (GKE) 發布、管理和調度 Deployment, 以及建立 CI/CD 管道,自動建構容器映像檔與執行 GKE 部署作業。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。
只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於表彰您相當熟悉 Google Cloud 產品與服務,並已通過測驗,能在互動式實作環境中應用相關知識。只要完成這個技能徽章課程和最終評量挑戰研究室,即可取得技能徽章並與親友分享成就。
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
這堂課程可讓參加人員瞭解如何使用確實有效的設計模式,在 Google Cloud 中打造相當可靠且效率卓越的解決方案。這堂課程接續了「設定 Google Compute Engine 架構」或「設定 Google Kubernetes Engine 架構」課程的內容,並假設參加人員曾實際運用上述任一課程涵蓋的技術。這堂課程結合了簡報、設計活動和實作研究室,可讓參加人員瞭解如何定義業務和技術需求,並在兩者之間取得平衡,設計出相當可靠、可用性高、安全又符合成本效益的 Google Cloud 部署項目。
完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。
隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。
這堂初級課程將介紹 Google Cloud 的資料分析工作流程,以及用於探索、分析資料並以圖表呈現的工具。您也能學會如何與相關人員分享自己的發現結果。本課程包含個案研究、實作實驗室、講座、測驗和示範,實際展示如何將原始資料集轉化為清晰的資料,進而呈現出能發揮成效的圖表和資訊主頁。無論您是資料領域從業人員、想瞭解如何透過 Google Cloud 取得成功,或有意在職涯中更上一層樓,本課程都能協助您踏出第一步。絕大多數在工作上執行或運用資料分析的學員,都能從本課程受益。
探索生成式 AI - Vertex AI 課程包含一系列實驗室,幫助您瞭解 如何在 Google Cloud 使用生成式 AI。透過實驗室,您將瞭解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison、 和 textembedding-gecko。您也會瞭解提示設計、最佳做法、 以及這些模型如何用於構思、文字分類、文字擷取、文字 摘要等。您也會瞭解如何透過 Vertex AI 自訂訓練功能調整基礎模型, 並將模型部署至 Vertex AI 端點。
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。
這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。