Gabung Login

Terapkan keterampilan Anda di Konsol Google Cloud

Raj Uppadhyay

Menjadi anggota sejak 2023

Gold League

52265 poin
Google Cloud Big Data and Machine Learning Fundamentals Earned Okt 8, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned Okt 6, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jun 21, 2024 EDT
Launching into Machine Learning Earned Mei 29, 2024 EDT
Memantau dan Membuat Log dengan Google Cloud Observability Earned Mei 19, 2024 EDT
Mengembangkan Aplikasi GenAI dengan Gemini dan Streamlit Earned Mei 12, 2024 EDT
Gemini untuk Data Scientist dan Analis Earned Mei 10, 2024 EDT
Gemini untuk Arsitek Cloud Earned Mei 9, 2024 EDT
Gemini untuk Engineer Jaringan Earned Mei 9, 2024 EDT
Gemini untuk Engineer Keamanan Earned Mei 5, 2024 EDT
Gemini untuk SDLC menyeluruh Earned Mei 5, 2024 EDT
Gemini untuk Engineer DevOps Earned Mei 5, 2024 EDT
Gemini untuk Developer Aplikasi Earned Mei 4, 2024 EDT
Desain Perintah dalam Vertex AI Earned Mei 3, 2024 EDT
Observability in Google Cloud Earned Apr 28, 2024 EDT
Introduction to Data Analytics in Google Cloud Earned Apr 27, 2024 EDT
Pengantar AI dan Machine Learning di Google Cloud Earned Mar 23, 2024 EDT
Membangun Infrastruktur dengan Terraform di Google Cloud Earned Mar 9, 2024 EST
Using DevSecOps in your Google Cloud Environment Earned Feb 28, 2024 EST
Mengimplementasikan Alur Kerja DevOps di Google Cloud Earned Feb 24, 2024 EST
Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud Earned Feb 22, 2024 EST
Getting Started with Terraform for Google Cloud Earned Feb 18, 2024 EST
Logging and Monitoring in Google Cloud Earned Feb 17, 2024 EST
Infrastruktur Google Cloud yang Dapat Diandalkan: Desain dan Proses Earned Feb 11, 2024 EST
Generative AI Fundamentals - Bahasa Indonesia Earned Jan 31, 2024 EST
Responsible AI: Menerapkan Prinsip AI dengan Google Cloud Earned Jan 31, 2024 EST
Developing a Google SRE Culture Earned Jan 25, 2024 EST
Dasar-Dasar Google Cloud: Infrastruktur Inti Earned Jan 25, 2024 EST
Pengantar Analisis Data di Google Cloud Earned Jan 22, 2024 EST
Penjelajah AI Generatif - Vertex AI Earned Jan 21, 2024 EST
Machine Learning Operations (MLOps): Getting Started Earned Jan 21, 2024 EST
Pengantar Vertex AI Studio Earned Des 13, 2023 EST
Membuat Model Pemberian Teks pada Gambar Earned Des 13, 2023 EST
Model Transformer dan Model BERT Earned Des 12, 2023 EST
Arsitektur Encoder-Decoder Earned Des 12, 2023 EST
Mekanisme Atensi Earned Des 11, 2023 EST
Pengantar Pembuatan Gambar Earned Des 11, 2023 EST
Pengantar Model Bahasa Besar Earned Des 9, 2023 EST
Pengantar Responsible AI Earned Des 4, 2023 EST
Pengantar AI Generatif Earned Des 3, 2023 EST

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Memantau dan Membuat Log dengan Google Cloud Observability untuk menunjukkan kemahiran dalam hal berikut: memantau virtual machine di Compute Engine, menggunakan Cloud Monitoring untuk pengawasan multi-project, memperluas kemampuan pemantauan dan logging ke Cloud Functions, membuat dan mengirimkan metrik aplikasi kustom, serta mengonfigurasi pemberitahuan Cloud Monitoring berdasarkan metrik kustom.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi GenAI dengan Gemini dan Streamlit untuk menunjukkan keterampilan dalam hal berikut: membuat teks, menerapkan panggilan fungsi dengan Python SDK dan Gemini API, serta men-deploy aplikasi Streamlit dengan Cloud Run. Anda akan mempelajari berbagai cara memberikan perintah kepada Gemini untuk membuat teks, menggunakan Cloud Shell untuk menguji dan melakukan iterasi pada aplikasi Streamlit, lalu mengemasnya sebagai container Docker yang di-deploy di Cloud Run.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu menganalisis data pelanggan dan memprediksi penjualan produk. Anda juga akan mempelajari cara mengidentifikasi, mengategorikan, dan mengembangkan pelanggan baru menggunakan data pelanggan di BigQuery. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan analisis data dan alur kerja machine learning. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator yang didukung AI generatif dari Google Cloud, dalam membantu engineer jaringan membuat, mengupdate, dan memelihara jaringan VPC. Anda akan mempelajari cara memanfaatkan Gemini untuk memberikan panduan spesifik untuk tugas-tugas jaringan Anda, lebih dari yang ditawarkan mesin telusur. Dengan menggunakan lab interaktif, Anda akan melihat cara Gemini dalam mempermudah urusan Anda dengan jaringan VPC Google Cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda mengamankan lingkungan dan resource cloud. Anda akan mempelajari cara men-deploy contoh workload ke dalam lingkungan di Google Cloud, mengidentifikasi kesalahan konfigurasi keamanan dengan Gemini, dan memperbaiki kesalahan konfigurasi keamanan dengan Gemini. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan postur keamanan cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda menggunakan produk dan layanan Google untuk mengembangkan, menguji, men-deploy, dan mengelola aplikasi. Dengan bantuan Gemini, Anda belajar cara mengembangkan dan membangun aplikasi web, memperbaiki error dalam aplikasi, mengembangkan pengujian, dan mengkueri data. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan siklus proses pengembangan software (SDLC). Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu engineer mengelola infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menemukan dan memahami log aplikasi, membuat cluster GKE, dan menyelidiki cara membuat lingkungan build. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja DevOps. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator berteknologi AI generatif dari Google Cloud, membantu developer membangun aplikasi. Anda akan mempelajari cara memanfaatkan Gemini untuk menjelaskan kode, merekomendasikan layanan Google Cloud, dan membuat kode untuk aplikasi Anda. Dengan lab interaktif, Anda akan merasakan peningkatan alur kerja pengembangan aplikasi menggunakan Gemini. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Desain Perintah dalam Vertex AI untuk menunjukkan keterampilan Anda dalam hal berikut: rekayasa perintah, analisis gambar, dan teknik generatif multimodal, dalam Vertex AI. Pelajari cara membuat perintah yang efektif, memandu output AI generatif, dan menerapkan model Gemini dalam skenario pemasaran di dunia nyata. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan kepada jaringan Anda.

Pelajari lebih lanjut

Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.

Pelajari lebih lanjut

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

Pelajari lebih lanjut

Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.

Pelajari lebih lanjut

Selesaikan badge keahlian Membangun Infrastruktur dengan Terraform di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: Prinsip Infrastruktur sebagai Kode (IaC) menggunakan Terraform, penyediaan dan pengelolaan resource Google Cloud dengan konfigurasi Terraform, pengelolaan status yang efektif (lokal dan jarak jauh), serta modularisasi kode Terraform agar dapat digunakan kembali dan diatur.

Pelajari lebih lanjut

In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.

Pelajari lebih lanjut

Selesaikan badge keahlian Mengimplementasikan Alur Kerja DevOps di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: membuat repositori git dengan Cloud Source Repositories, meluncurkan, mengelola, dan menskalakan deployment di Google Kubernetes Engine (GKE), serta merancang pipeline CI/CD yang mengotomatiskan pembangunan dan deployment image container ke GKE. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub.

Pelajari lebih lanjut

This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.

Pelajari lebih lanjut

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Pelajari lebih lanjut

Kursus ini membekali peserta dengan keterampilan untuk membangun solusi yang sangat andal dan efisien di Google Cloud menggunakan pola desain yang telah terbukti. Kursus ini merupakan kelanjutan dari kursus Membangun dengan Google Compute Engine atau Membangun dengan Google Kubernetes Engine dan memberikan pengalaman interaktif dengan teknologi yang dibahas dalam kursus tersebut. Melalui kombinasi presentasi, aktivitas desain, dan lab interaktif, peserta akan mempelajari cara menentukan serta menyeimbangkan kebutuhan bisnis dan teknis untuk merancang deployment Google Cloud yang sangat andal, sangat tersedia, aman, dan hemat biaya.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Introduction to Generative AI, Introduction to Large Language Models, dan Introduction to Responsible AI. Dengan berhasil menyelesaikan kuis akhir, Anda membuktikan pemahaman Anda tentang konsep dasar AI generatif. Badge keahlian adalah badge digital yang diberikan oleh Google Cloud sebagai pengakuan atas pengetahuan Anda tentang produk dan layanan Google Cloud. Pamerkan badge keahlian Anda dengan menampilkan profil Anda kepada publik dan menambahkannya ke profil media sosial Anda.

Pelajari lebih lanjut

Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.

Pelajari lebih lanjut

In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.

Pelajari lebih lanjut

Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.

Pelajari lebih lanjut

Dalam kursus tingkat pemula ini, Anda akan mempelajari alur kerja Analisis Data di Google Cloud dan alat yang dapat Anda gunakan untuk mengeksplorasi, menganalisis, dan memvisualisasikan data, serta membagikan temuan Anda dengan para pemangku kepentingan. Dengan menggunakan studi kasus serta lab interaktif, materi, dan kuis/demo, kursus ini akan mendemonstrasikan cara menghasilkan data bersih hingga visualisasi dan dasbor yang menghasilkan dampak dari set data mentah. Entah Anda sudah bekerja dengan data dan ingin mempelajari cara sukses di Google Cloud, atau ingin mengembangkan karier Anda, kursus ini akan membantu Anda memulai. Hampir semua orang yang melakukan atau menggunakan analisis data dalam pekerjaan mereka dapat mengambil manfaat dari kursus ini.

Pelajari lebih lanjut

Kursus Penjelajah AI Generatif - Vertex AI adalah sekumpulan lab yang membahas cara menggunakan AI Generatif di Google Cloud. Melalui lab ini, Anda akan mempelajari cara menggunakan model dalam rangkaian Vertex AI PaLM API, termasuk text-bison, chat-bison, dan textembedding-gecko. Anda juga akan mempelajari desain perintah, praktik terbaik, serta cara menggunakannya untuk pencarian ide, klasifikasi teks, ekstraksi teks, peringkasan teks, dan banyak lagi. Anda juga akan mempelajari cara menyesuaikan model dasar dengan melatihnya melalui pelatihan kustom Vertex AI dan men-deploy-nya ke endpoint Vertex AI.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.

Pelajari lebih lanjut

Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.

Pelajari lebih lanjut

Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.

Pelajari lebih lanjut

Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.

Pelajari lebih lanjut

Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.

Pelajari lebih lanjut

Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut