加入 登录

在 Google Cloud 控制台中运用您的技能

Uladzimir Sernatski

成为会员时间:2023

Google Cloud 中的 Kubernetes Earned Oct 23, 2023 EDT
Understand Your Google Cloud Costs Earned Oct 22, 2023 EDT
Data Catalog Fundamentals Earned Oct 22, 2023 EDT
Serverless Data Processing with Dataflow: Operations Earned Oct 18, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned Oct 17, 2023 EDT
使用 BigQuery ML 為預測模型進行資料工程 Earned Jul 9, 2023 EDT
透過 BigQuery 建構資料倉儲 Earned Jun 17, 2023 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Jun 17, 2023 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned Jun 15, 2023 EDT
Serverless Data Processing with Dataflow: Develop Pipelines Earned Jun 13, 2023 EDT
Building Batch Data Pipelines on Google Cloud Earned Jun 9, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned May 31, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned May 30, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned Mar 6, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned Mar 3, 2023 EST

Kubernetes 是最受歡迎的容器自動化調度管理系統,Google Kubernetes Engine 則專門支援 Google Cloud 中的 代管 Kubernetes 部署項目。這門進階課程將帶您實際練習設定 Docker 映像檔和容器,並部署完整的 Kubernetes Engine 應用程式。 您會學到如何將容器自動化調度管理機制, 整合到自己的工作流程,這些技巧相當實用。 想透過實作挑戰實驗室展現 技能、驗收學習成果嗎?本課程結束後,再完成 在 Google Cloud 部署 Kubernetes 應用程式課程 結尾的挑戰實驗室,即可獲得專屬 Google Cloud 數位徽章。

了解详情

This Quest is most suitable for those working in a technology or finance role who are responsible for managing Google Cloud costs. You’ll learn how to set up a billing account, organize resources, and manage billing access permissions. In the hands-on labs, you'll learn how to view your invoice, track your Google Cloud costs with Billing reports, analyze your billing data with BigQuery or Google Sheets, and create custom billing dashboards with Looker Studio. References made to links in the videos can be accessed in this Additional Resources document.

了解详情

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

了解详情

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

了解详情

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

完成使用 BigQuery ML 為預測模型進行資料工程技能徽章中階課程, 即可證明自己具備下列知識與技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換 pipeline; 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 工作負載, 以及使用 BigQuery ML 建構機器學習模型。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程及結業評量挑戰實驗室,即可取得數位徽章 並與他人分享。

了解详情

完成 透過 BigQuery 建構資料倉儲 技能徽章中階課程,即可證明您具備下列技能: 彙整資料以建立新資料表、排解彙整作業問題、利用聯集附加資料、建立依日期分區的資料表, 以及在 BigQuery 使用 JSON、陣列和結構體。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。

了解详情

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

了解详情

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

了解详情

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

了解详情

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情