Archit Sharma
Date d'abonnement : 2022
Ligue d'Or
25850 points
Date d'abonnement : 2022
Obtenez le badge de compétence de niveau débutant "Créer des applications d'IA concrètes avec Gemini et Imagen" pour démontrer vos compétences dans les domaines suivants : reconnaissance d'image, traitement du langage naturel, génération d'images à l'aide des puissants modèles Gemini et Imagen de Google, et déploiement d'applications sur la plate-forme Vertex AI.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Google Cloud Console serves as a centralized hub where users can access and control their cloud infrastructure, services, and applications. It is essential for users, developers, and administrators who work with Google Cloud Platform. Game on to get familiar with Google Cloud Console, and get your hands on a Google Cloud Credential. No prior experience required!
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
Demand for cloud-skilled workers is rising. According to a report by Indeed, cloud computing jobs are expected to grow by 22% over the next five years, much faster than the average for all occupations. Play now to get hands-on experience building with Google Cloud's powerful coding and infrastructure management tools. Each lab teaches and tests your growing tech skills, and sets you on the path to your first Google Cloud credential.
Earn a skill badge by completing the Networking Fundamentals on Google Cloud quest, where you learn how to work with VPC networks and load balancers on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtenez un badge de compétence en suivant le cours App Engine : 3 applications, où vous apprendrez à utiliser App Engine avec Python, Go et PHP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que que vous pourrez partager avec votre réseau.
Complete the introductory Create and Manage Cloud Spanner Instances skill badge to demonstrate skills in the following: creating and interacting with Cloud Spanner instances and databases; loading Cloud Spanner databases using various techniques; backing up Cloud Spanner databases; defining schemas and understanding query plans; and deploying a Modern Web App connected to a Cloud Spanner instance.
Terminez le cours intermédiaire Développer des applications sans serveur avec Firebase pour recevoir un badge démontrant vos compétences dans les domaines suivants : la conception et la création d'applications Web sans serveur avec Firebase, l'utilisation de Firestore pour gérer des bases de données, l'automatisation des processus de déploiement à l'aide de Cloud Build et l'intégration des fonctionnalités de l'Assistant Google dans vos applications. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation. Les badges de compétence valident vos connaissances sur des produits spécifiques lors d'ateliers pratiques et d'évaluations. Décrochez un badge en suivant un cours ou accédez directement à l'atelier challenge correspondant pour l'obtenir dès aujourd'hui. Les badges attestent de votre niveau de maîtrise, améliorent votre profil professionnel et, par conséquent, vous permettent d'accroître vos opportunités de carrière. Accédez à votre profil pour retrouver les badges que vous avez obtenus.
Ce cours a été conçu pour présenter en détail les services principaux de Google Workspace. Les participants y apprendront à activer, désactiver et configurer les paramètres de ces services, dont Gmail, Agenda, Drive, Meet, Chat et Docs. Ensuite, ils découvriront comment déployer et gérer Gemini dans l'intérêt de leurs utilisateurs. Enfin, les participants examineront des cas d'utilisation d'AppSheet et d'Apps Script pour apprendre à automatiser des tâches et étendre les fonctionnalités des applications Google Workspace.
Ce cours apprend aux participants à sécuriser leur environnement Google Workspace. Les participants mettront en place des règles de mot de passe sécurisées ainsi que la validation en deux étapes pour gérer l'accès des utilisateurs. Ils utiliseront ensuite l'outil d'investigation de sécurité afin d'identifier et de résoudre les problèmes de sécurité de manière proactive. Ensuite, ils géreront l'accès aux applications tierces et les appareils mobiles afin d'assurer la sécurité. Pour finir, les participants appliqueront les mesures de sécurité des e-mails et de conformité pour protéger les données organisationnelles.
Ce cours apporte aux participants des compétences de gouvernance des données dans leur environnement Google Workspace. Les participants étudieront l'utilisation de règles de protection contre la perte de données dans Gmail et Drive afin de prévenir les fuites de données. Ils apprendront ensuite à utiliser Google Vault pour la conservation et la récupération des données. Ils découvriront ensuite comment configurer les régions de données et les paramètres d'exportation afin de se conformer à la réglementation. Enfin, ils verront comment classifier les données à l'aide d'étiquettes pour améliorer l'organisation et renforcer la sécurité.
With Google Calendar, you can quickly schedule meetings and events and create tasks, so you always know what’s next. Google Calendar is designed for teams, so it’s easy to share your schedule with others and create multiple calendars that you and your team can use together. In this course, you’ll learn how to create and manage Google Calendar events. You will learn how to update an existing event, delete and restore events, and search your calendar. You will understand when to apply different event types such as tasks and appointment schedules. You will explore the Google Calendar settings that are available for you to customize Google Calendar to suit your way of working. During the course you will learn how to create additional calendars, share your calendars with others, and access other calendars in your organization.
Gmail is Google’s cloud based email service that allows you to access your messages from any computer or device with just a web browser. In this course, you’ll learn how to compose, send and reply to messages. You will also explore some of the common actions that can be applied to a Gmail message, and learn how to organize your mail using Gmail labels. You will explore some common Gmail settings and features. For example, you will learn how to manage your own personal contacts and groups, customize your Gmail Inbox to suit your way of working, and create your own email signatures and templates. Google is famous for search. Gmail also includes powerful search and filtering. You will explore Gmail’s advanced search and learn how to filter messages automatically.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours d'introduction Surveiller et journaliser avec Google Cloud Observability pour recevoir un badge démontrant vos compétences dans les domaines suivants : la surveillance des machines virtuelles dans Compute Engine, l'utilisation de Cloud Monitoring pour la supervision multiprojet, l'extension des fonctionnalités de surveillance et de journalisation à Cloud Functions, la création et l'envoi de métriques d'application personnalisées, et la configuration d'alertes Cloud Monitoring en fonction de ces métriques personnalisées. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Complete the intermediate Déployer des applications Kubernetes sur Google Cloud skill badge to demonstrate skills in the following: configuring and building Docker container images, creating and managing Google Kubernetes Engine (GKE) clusters, utilizing kubectl for efficient cluster management, and deploying Kubernetes applications with robust continuous delivery (CD) practices. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Earn a skill badge by completing the Share Data Using Google Data Cloud course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Optimiser les coûts pour Google Kubernetes Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et la gestion de clusters mutualisés, la surveillance de l'utilisation des ressources par espace de noms, la configuration de l'autoscaling des pods et des clusters pour accroître l'efficacité, la configuration de l'équilibrage de charge pour distribuer les ressources de façon optimale et l'implémentation des vérifications d'activité et d'aptitude pour garantir l'intégrité ainsi que la rentabilité des applications. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
"Planning for a Google Workspace Deployment" est le dernier cours de la série "Google Workspace Administration". Dans ce cours, vous découvrirez la méthodologie et les bonnes pratiques de déploiement de Google. Vous suivrez Katelyn et Marcus lors de la planification du déploiement de Google Workspace chez Cymbal. Ils se concentreront sur les principaux aspects techniques du projet, à savoir le provisionnement, la distribution des e-mails, la migration des données et la coexistence, et identifieront la meilleure stratégie de déploiement pour chaque aspect. Vous verrez également toute l'importance de la gestion du changement lors du déploiement de Google Workspace, afin de s'assurer que les utilisateurs bénéficient d'une transition fluide vers Google Workspace et profitent des avantages de ce changement grâce à des communications, une assistance et des formations. Ce cours aborde des sujets théoriques et ne contient aucun exercice pratique. Si ce n'est pas déjà fait, veuillez annuler…
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.
This course introduces you to the fundamentals and advanced practices applicable to the installation and management of Google Cloud's Apigee API Platform for private cloud. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, install, secure, manage, and scale Apigee API Platform. This is the first course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud series. After completing this course, enroll in the On Premises Management, Security, and Upgrade with Google Cloud's Apigee API Platform course.
This module helps you build a robust understanding of concepts related to Networking, Security & Kubernetes Engine. This course is part of a series of courses called Google Cloud Computing Foundations. The courses should be completed in the following order: Google Cloud Computing Foundations: Cloud Computing Fundamentals Google Cloud Computing Foundations: Infrastructure in Google Cloud Google Cloud Computing Foundations: Networking and Security in Google Cloud Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Google Cloud Computing Foundation with Kubernetes
Terminez le cours Architecture cloud : concevoir, implémenter et gérer pour recevoir un badge démontrant vos compétences dans les domaines suivants : le déploiement d'un site Web accessible publiquement à l'aide de serveurs Web Apache, la configuration d'une VM Compute Engine à l'aide de scripts de démarrage, la configuration d'une session RDP sécurisée à l'aide de règles de pare-feu et d'un hôte bastion Windows, la création d'une image Docker, son déploiement dans un cluster Kubernetes et sa mise à jour, et la création d'une instance Cloud SQL et l'importation d'une base de données MySQL. Le cours lié à ce badge de compétence est une excellente ressource pour comprendre les sujets qui seront abordés dans l'examen de certification Google Cloud Certified Professional Cloud Architect. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connais…
Earn a skill badge by completing the Measure Site Reliability using Cloud Operations Suite quest, where you will learn how to set Service Level Indicators (SLIs), Service Level Objectives (SLOs), and Service Level Agreements (SLAs); create logs-based metrics to capture to capture specific issues and address them; define alerts to notify Site Reliability Engineers of issues in production environment, and troubleshoot application issues with Cloud Trace, Debugger, Profiler, Monitoring and Logging. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Terminez le cours intermédiaire Développer des applications sans serveur sur Cloud Run pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'intégration de Cloud Run à Cloud Storage pour la gestion des données, la conception de systèmes asynchrones résilients à l'aide de Cloud Run et Pub/Sub, la construction de passerelles API REST reposant sur Cloud Run, et la création et le déploiement de services sur Cloud Run. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Course Description:
Ce cours permet aux participants d'apprendre à créer des solutions hautement fiables et efficaces sur Google Cloud en s'appuyant sur des modèles de conception éprouvés. Il s'inscrit dans la continuité des cours "Concevoir une architecture avec Google Compute Engine" et "Concevoir une architecture avec Google Kubernetes Engine" et demande une expérience pratique des technologies abordées dans chaque cours. À travers un ensemble de présentations, d'activités de conception et d'ateliers pratiques, les participants apprennent à définir des exigences techniques et commerciales, et à trouver un équilibre entre elles pour concevoir des déploiements Google Cloud hautement fiables et disponibles, sécurisés et économes.
Ce cours présente aux participants des techniques pour surveiller et améliorer les performances de l'infrastructure et des applications dans Google Cloud. À travers un ensemble de présentations, de démonstrations, d'ateliers pratiques et d'études de cas concrets, les participants se familiariseront avec la surveillance full stack, la gestion et l'analyse des journaux en temps réel, le débogage de code en production, le traçage des goulots d'étranglement affectant les performances des applications, et le profilage de l'utilisation du processeur et de la mémoire.
In this course, you learn how to secure your APIs. You explore the security concerns you will encounter for your APIs. You learn about OAuth, the primary authorization method for REST APIs. You will learn about JSON Web Tokens (JWTs) and federated security. You also learn about securing against malicious requests, safely sending requests across a public network, and how to secure your data for users of Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the second course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Development on Google Cloud's Apigee API Platform course.
Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.
Ce cours à la demande accéléré présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants explorent et déploient des éléments de solution, y compris l'interconnexion sécurisée de réseaux, l'équilibrage de charge, l'autoscaling, l'automatisation de l'infrastructure et les services gérés.
Dans le cours "Architecting with Google Kubernetes Engine: Foundations," nous allons vous présenter l'organisation et les principes de Google Cloud. Nous vous apprendrons ensuite à créer et gérer des conteneurs de logiciels, puis nous vous ferons découvrir l'architecture de Kubernetes. Il s'agit du premier cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous au cours "Architecting with Google Kubernetes Engine: Workloads".
Le cours "Architecting with Google Kubernetes Engine: Workloads" vous fera découvrir de manière très complète le développement d'applications cloud natives. Tout au long de votre formation, vous étudierez les opérations Kubernetes, la gestion des déploiements, la mise en réseau GKE et le stockage persistant. Il s'agit du premier cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous au cours "Architecting with Google Kubernetes Engine: Production".
Dans ce cours, vous découvrirez la sécurité dans Kubernetes et Google Kubernetes Engine (GKE) (journaux et surveillance), ainsi que l'utilisation des services de stockage et de bases de données gérés Google Cloud à partir de GKE. Il s'agit du deuxième cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous aux cours "Reliable Google Cloud Infrastructure: Design and Process" ou "Hybrid Cloud Infrastructure Foundations with Anthos".
Bienvenue dans le cours "Premiers pas avec Google Kubernetes Engine". Si vous vous intéressez à Kubernetes, une couche logicielle située entre vos applications et votre infrastructure matérielle, vous êtes au bon endroit. Google Kubernetes Engine vous permet d'accéder à Kubernetes en tant que service géré sur Google Cloud. L'objectif de ce cours est de vous présenter les principes de base de Google Kubernetes Engine (GKE), et de vous apprendre à conteneuriser et exécuter des applications dans Google Cloud. Le cours commence par une introduction aux principes de base de Google Cloud, puis se poursuit par une présentation des conteneurs et de Kubernetes, de l'architecture de Kubernetes et des opérations Kubernetes.
Course three of the Anthos series prepares students to run Anthos in a customer’s on-premises environment, on bare metal.Through presentations and hands-on labs, participants explore deploying and running Anthos applications on bare metal, creating the Anthos infrastructure, deploying applications, and performing monitoring, logging, and tracing. This course is a continuation of course two, Cloud Operations and Service Mesh with Anthos, and assumes direct experience with the topics covered in that course.
Ce cours à la demande permet aux participants de comprendre et d’adopter le maillage de services basé sur Istio avec Anthos pour centraliser l'observabilité, la gestion du trafic et la sécurité au niveau du service. Il s'agit du deuxième cours de la série "Architecting Hybrid Cloud Infrastructure with Anthos". Une fois ce cours terminé, les participants doivent suivre le cours "Hybrid Cloud Multi-Cluster with Anthos". Vous devez avoir terminé le parcours "Architecting with Google Kubernetes Engine" pour pouvoir suivre ce cours.
Course one of the Architecting Hybrid Cloud with Anthos series introduces participants to manage multi-cloud and hybrid Kubernetes deployments using Anthos. Through presentations and hands-on labs, participants explore planning and creating Anthos environments and building manageable and reliable multi-cluster Kubernetes infrastructure environments centered around Anthos and containers. This course is a continuation of Architecting with GKE and assumes direct experience with the technologies covered in that course.
Ce cours à la demande permet aux participants de comprendre, de configurer et de gérer des infrastructures Kubernetes multicluster à l'aide d'Anthos GKE et d'un maillage de services basé sur Istio, que ces infrastructures soient déployées avec Anthos sur Google Cloud ou avec Anthos sur VMware. Il s'agit du troisième et dernier cours de la série "Architecting Hybrid Cloud Infrastructure with Anthos". Vous devez avoir terminé le parcours "Architecting with Google Kubernetes Engine" pour pouvoir suivre ce cours.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations, des démonstrations et des ateliers pratiques, les participants découvrent et déploient les composants d'une solution Google Cloud sécurisée, y compris les technologies de contrôle des accès à Cloud Storage, les clés de sécurité, les clés de chiffrement fournies par le client, les contrôles d'accès aux API, les champs d'application, les VM protégées, le chiffrement, et les URL signées. Le cours aborde également la sécurisation des environnements Kubernetes.
"Networking in Google Cloud" est une série de cours en six parties. Bienvenue dans la première des six parties de notre série de cours "Networking in Google Cloud: Fundamentals". Ce cours fournit une présentation complète des concepts fondamentaux de la mise en réseau, y compris les principes de base de la mise en réseau, les cloud privés virtuels (VPC) et le partage des réseaux VPC. Il traite également des techniques de journalisation et de surveillance des réseaux.
Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.
Dans ce cours en auto-formation, les participants étudient des solutions d'atténuation des attaques pouvant survenir en de nombreux points d'une infrastructure basée sur Google Cloud, telles que des attaques par déni de service distribué (DDoS) ou par hameçonnage, ou des menaces liées à la classification et à l'utilisation de contenu. Ils découvriront également Security Command Center, Cloud Logging et les journaux d'audit, ainsi que l'utilisation de Forseti pour connaître l'état de conformité global avec les stratégies de sécurité de l'organisation.
Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.
Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
In this course, you learn how to create APIs that utilize multiple services and how you can use custom code on Apigee. You will also learn about fault handling, and how to share logic between proxies. You learn about traffic management and caching. You also create a developer portal, and publish your API to the portal. You learn about logging and analytics, as well as CI/CD and the different deployment models supported by Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform.This is the third and final course of the Developing APIs with Google Cloud's Apigee API Platform course series.
Ce cours est une introduction à Terraform pour Google Cloud. Il permet aux participants de découvrir comment Terraform peut être utilisé pour implémenter une Infrastructure as Code, et comment appliquer certaines de ses fonctionnalités essentielles pour créer et gérer une infrastructure Google Cloud. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant et en gérant des ressources Google Cloud à l'aide de Terraform.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.
Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.
This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications
Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …
Bienvenue dans le deuxième cours de la série "Networking in Google Cloud", intitulé "Routing and Addressing". Dans ce cours, nous allons nous intéresser aux concepts centraux du routage et de l'adressage dans le contexte des fonctionnalités réseau de Google Cloud. Dans le module 1, nous poserons les bases en explorant le routage et l'adressage réseau dans Google Cloud. Nous verrons des composants clés tels que le routage IPv4, l'utilisation de vos propres adresses IP (BYOIP, Bring Your Own IP) et la configuration de Cloud DNS. Dans le module 2, nous nous concentrerons sur les options de connexion privée. Nous explorerons des cas d'utilisation et des méthodes permettant d'accéder à Google et à d'autres services de façon privée à l'aide d'adresses IP internes. À la fin de ce cours, vous aurez compris comment acheminer et gérer efficacement votre trafic réseau dans Google Cloud.
This course introduces you to the fundamentals and practices used to install and manage Google Cloud's Apigee API Platform for hybrid cloud. Through a combination of lectures, a hands-on lab, and supplemental materials, you will learn how to install and operate the Apigee API Platform.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations enregistrées, des démonstrations et des ateliers pratiques, les participants explorent et déploient les composants d'une solution Google Cloud sécurisée (Cloud Identity, Resource Manager, Cloud IAM, les pare-feu de cloud privé virtuel, Cloud Load Balancing, l'appairage cloud, Cloud Interconnect et VPC Service Controls, par exemple). Ceci est le premier cours de la série "Security in Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Security Best Practices in Google Cloud".
Welcome to "CCAI Virtual Agent Development in Dialogflow ES for Software Developers", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn to use additional features of Dialogflow ES for your virtual agent, create a Firestore instance to store customer data, and implement cloud functions that access the data. With the ability to read and write customer data, learner’s virtual agents are conversationally dynamic and able to defer contact center volume from human agents. You'll be introduced to methods for testing your virtual agent and logs which can be useful for understanding issues that arise. Lastly, learn about connectivity protocols, APIs, and platforms for integrating your virtual agent with services already established for your business.
This course discusses the management and operation of the Apigee platform for private cloud. It includes topics on operational practices, API deployment, analytics, security and upgrade of the platform. This is the second course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud course series. After completing this course, enroll in the On Premises Capacity Upgrade and Monitoring with Google Cloud's Apigee API Platform course.
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
Welcome to "Virtual Agent Development in Dialogflow ES for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will use Dialogflow ES to create virtual agents and test them using the Dialogflow ES simulator. This course also provides best practices on developing virtual agents. You will also be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations. Through a combination of presentations, demos, and hands-on labs, participants learn how to create virtual agents. This is an intermediate course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications fo…
Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.
Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…
Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.
Learn how to upgrade capacity for the Apigee for private cloud platform installation, and how to monitor the platform. This is the third and final course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud series.
Google Cloud Fundamentals for Azure Professionals introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
Obtenez un badge de compétence en suivant le cours Surveiller des environnements avec Google Cloud Managed Service pour Prometheus, pendant lequel vous apprendrez à utiliser Kubernetes Monitoring avec Google Cloud Managed Service pour Prometheus. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
In this quest you will use a collection of Google APIs that are all related to language, and speech. You will use the Speech-to-Text API to transcribe an audio file into a text file, the Cloud Translation API to translate from one language to another, the Cloud Translation API to detect what language is being used and translate to a different language, the Natural Language API to classify text and analyze sentiment, and create synthetic speech.
Google Cloud Fundamentals for AWS Professionals introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.
Le cours "Google Cloud Fundamentals: Core Infrastructure" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
Ce cours a été conçu pour présenter la gestion des ressources et des utilisateurs dans Google Workspace. Les participants y apprendront à configurer des unités organisationnelles pour répondre aux besoins de leur organisation, et à gérer différents types de groupes Google. Ils développeront également une expertise dans la gestion des paramètres de domaine dans Google Workspace. Pour finir, ils apprendront à maîtriser l'optimisation et la structuration des ressources dans leur environnement Google Workspace.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Traiter des flux de données est une pratique de plus en plus populaire, car ceux-ci permettent aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Cloud Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.
En intégrant le machine learning à des pipelines de données, les entreprises peuvent dégager davantage d'insights de leurs données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud, selon le niveau de personnalisation requis. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Kubeflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des modèles de machine learning sur Google Cloud à l'aide de Qwiklabs.
Concepts fondamentaux de Google Cloud : Core Infrastructure présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
This course introduces participants to the strategies to migrate from a source environment to Google Cloud. Participants are introduced to Google Cloud's fundamental concepts and more in depth topics, like creating virtual machines, configuring networks and managing access and identities. The course then covers the installation and migration process of Migrate for Compute Engine, including special features like test clones and wave migrations.
Cette quête s'adresse particulièrement aux personnes qui travaillent dans les technologies ou les finances et qui sont responsables de la gestion des coûts de GCP. Vous apprendrez à configurer un compte de facturation, à organiser les ressources et à gérer les autorisations d'accès à la facturation. Grâce aux ateliers pratiques, vous apprendrez à visualiser votre facture, à suivre vos coûts GCP à l'aide de rapports de facturation, à analyser vos données de facturation avec BigQuery ou Google Sheets et à créer des tableaux de bord de facturation personnalisés avec Data Studio.
Dans ce cours, les utilisateurs expérimentés de Google Cloud apprendront à décrire et lancer des ressources cloud avec Terraform. Il s'agit d'un outil Open Source qui codifie les API dans des fichiers de configuration déclaratifs pouvant être partagés par les membres d'une équipe, traités comme du code, modifiés, révisés et gérés par version. Dans ces ateliers pratiques, vous utiliserez des exemples de modèles et apprendrez à lancer une série de configurations, allant de serveurs simples à des applications avec équilibrage de charge complet.
This course, Preparing for your Professional Data Engineer Journey - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Preparing for your Professional Data Engineer Journey. This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours lié à ce badge de compétence et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que que vous pourrez partager avec votre réseau.
If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.
Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.
Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence numérique que vous pourrez…
Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud…
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
Ceci est le deuxième cours de la série "Data to Insights". Ici, nous verrons comment ingérer de nouveaux ensembles de données externes dans BigQuery et les visualiser avec Looker Studio. Nous aborderons également des concepts SQL intermédiaires, tels que les jointures et les unions de plusieurs tables, qui vous permettront d'analyser les données de différentes sources. Remarque : Même si vous avez des connaissances en SQL, certaines spécificités de BigQuery (comme la gestion du cache de requêtes et des caractères génériques de table) peuvent ne pas vous être familières.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Achieving Advanced Insights with BigQuery".
Le troisième cours de cette série s'intitule "Achieving Advanced Insights with BigQuery". Notre objectif est ici d'approfondir vos connaissances en SQL en abordant en détail les fonctions avancées et en vous apprenant à décomposer les requêtes complexes en étapes faciles à gérer. Nous allons étudier l'architecture interne de BigQuery (stockage segmenté basé sur des colonnes), ainsi que des concepts SQL avancés tels que les champs imbriqués et répétés, en utilisant pour cela des objets ARRAY et STRUCT. Pour finir, nous verrons comment optimiser les performances de vos requêtes et sécuriser vos données à l'aide des vues autorisées.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Applying Machine Learning to Your Data with Google Cloud".
Dans ce cours, nous définirons ce qu'est le machine learning et ce qu'il peut apporter à votre entreprise. Vous verrez quelques démonstrations de l'utilisation du ML et découvrirez ses termes clés, comme instances, caractéristiques et étiquettes. Lors des ateliers interactifs, vous vous entraînerez à appeler les API de ML préentrainées disponibles et à construire vos propres modèles de machine learning en utilisant simplement SQL avec BigQuery ML.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge
Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.
Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide a detailed overview of concepts covering cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the course, learners will be able to articulate concepts around cloud computing, big data, and machine learning, and demonstrate some hands-on skills. This course is part of a series of courses called Google Cloud Computing Foundations. The courses should be completed in the following order: Google Cloud Computing Foundations: Cloud Computing Fundamentals Google Cloud Computing Foundations: Infrastructure in Google Cloud Google Cloud Computing Foundations: Networking and Security in Google Cloud Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Google Cloud Computing Foundation with Kubernetes This final course in the series rev…
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide a detailed overview of concepts covering cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the course, learners will be able to articulate concepts around cloud computing, big data, and machine learning, and demonstrate some hands-on skills. This course is part of a series of courses called Google Cloud Computing Foundations. The courses should be completed in the following order: Google Cloud Computing Foundations: Cloud Computing Fundamentals Google Cloud Computing Foundations: Infrastructure in Google Cloud Google Cloud Computing Foundations: Networking and Security in Google Cloud Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Google Cloud Computing Foundation with Kubernetes This third course covers how to build secure networks, …
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. This course is part of a series of courses called Google Cloud Computing Foundations. The courses should be completed in the following order: Google Cloud Computing Foundations: Cloud Computing Fundamentals Google Cloud Computing Foundations: Infrastructure in Google Cloud Google Cloud Computing Foundations: Networking and Security in Google Cloud Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Google Cloud Computing Foundations: Kubernetes Engine Fundamentals This first course provides an overview of cloud computing, ways to use Google Cloud, …
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Les organisations de toutes tailles exploitent le potentiel et la flexibilité du cloud afin de transformer leurs opérations. Toutefois, la gestion et le scaling des ressources cloud peuvent s'avérer complexes. "Scaling avec la suite Google Cloud Operations" présente les concepts fondamentaux des opérations modernes, de la fiabilité et de la résilience dans le cloud, ainsi que la manière dont Google Cloud peut vous aider à atteindre ces objectifs. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
De nombreuses entreprises traditionnelles utilisent d'anciens systèmes et d'anciennes applications qui ne peuvent plus satisfaire les attentes des clients d'aujourd'hui. Les chefs d'entreprise doivent régulièrement choisir entre deux options : entretenir leurs systèmes informatiques vieillissants ou investir dans de nouveaux produits et services. Le cours "Moderniser l'infrastructure et les applications avec Google Cloud" aborde ces problématiques et propose des solutions pour les résoudre à l'aide de la technologie cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.
Ce cours vous aide à préparer l'examen pour obtenir la certification Associate Cloud Engineer. Vous découvrirez les domaines Google Cloud abordés dans l'examen et verrez comment créer un plan de formation pour améliorer vos connaissances de ces domaines.
La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.