가입 로그인

Google Cloud 콘솔에서 기술 적용

Juan Andres Moreno Valero

회원 가입일: 2022

실버 리그

18930포인트
Recommendation Systems on Google Cloud Earned 7월 24, 2024 EDT
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 7월 14, 2024 EDT
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 7월 9, 2024 EDT
Natural Language Processing on Google Cloud Earned 7월 2, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned 7월 2, 2024 EDT
How Google Does Machine Learning - 한국어 Earned 6월 30, 2024 EDT
Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 Earned 6월 28, 2024 EDT
Launching into Machine Learning - 한국어 Earned 6월 17, 2024 EDT
생성형 AI 소개 Earned 5월 22, 2024 EDT

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

자세히 알아보기

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

자세히 알아보기

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

자세히 알아보기

Google Cloud에서 머신러닝을 구현하기 위한 권장사항에는 어떤 것이 있을까요? Vertex AI란 무엇이고, 이 플랫폼을 사용하여 코드는 한 줄도 작성하지 않고 AutoML 머신러닝 모델을 빠르게 빌드, 학습, 배포하려면 어떻게 해야 할까요? 머신러닝이란 무엇이며 어떤 종류의 문제를 해결할 수 있을까요? Google은 머신러닝을 조금 다른 방식으로 바라봅니다. Google이 머신러닝과 관련하여 중요하게 생각하는 것은 관리형 데이터 세트를 위한 통합 플랫폼과 특징 저장소를 제공하고, 코드를 작성하지 않고도 머신러닝 모델을 빌드, 학습, 배포할 방법을 제공하고, 데이터에 라벨을 지정하고, TensorFlow, scikit-learn, Pytorch, R 등과 같은 프레임워크를 사용하여 Workbench 노트북을 만들 수 있도록 지원하는 것입니다. Google의 Vertex AI 플랫폼에는 커스텀 모델을 학습시키고, 구성요소 파이프라인을 빌드하고, 온라인 및 일괄 예측을 실행하는 기능이 포함되어 있습니다. 후보 사용 사례를 머신러닝으로 구동되도록 변환하는 5단계를 살펴보고, 단계를 건너뛰지 않는 것이 중요한 이유를 알아봅니다. 마지막으로, 머신러닝이 증폭시킬 수 있는 편향과 이를 인식할 방법을 살펴봅니다.

자세히 알아보기

Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 과정을 완료하여 중급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud의 Vertex AI Platform, AutoML, 커스텀 학습 서비스를 사용해 머신러닝 모델을 학습, 평가, 조정, 설명, 배포하는 방법을 알아봅니다. 이 기술배지 과정은 전문 데이터 과학자 및 머신러닝 엔지니어를 대상으로 합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받게 됩니다.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기