Partecipa Accedi

Applica le tue competenze nella console Google Cloud

Kabuqueci Souza Alves

Membro dal giorno 2023

Campionato Oro

23325 punti
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned mag 30, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned mag 30, 2024 EDT
Recommendation Systems on Google Cloud Earned mag 28, 2024 EDT
Natural Language Processing on Google Cloud Earned mag 23, 2024 EDT
Production Machine Learning Systems Earned mag 14, 2024 EDT
Machine learning in azienda Earned mag 10, 2024 EDT
Feature engineering Earned mar 25, 2024 EDT
Crea, addestra ed esegui il deployment di modelli ML tramite Keras su Google Cloud Earned mar 18, 2024 EDT
Launching into Machine Learning - Italiano Earned mar 8, 2024 EST
Google Cloud Fundamentals: Core Infrastructure - Italiano Earned giu 24, 2023 EDT

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Scopri di più

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Scopri di più

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Scopri di più

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Scopri di più

Questo corso adotta un approccio pratico reale al flusso di lavoro ML attraverso un case study. Un team ML è chiamato a rispondere a numerosi requisiti aziendali e ad affrontare vari casi d'uso ML. Deve comprendere gli strumenti necessari per la gestione e la governance dei dati e considerare l'approccio migliore per la pre-elaborazione dei dati. Al team vengono presentate tre opzioni per creare modelli ML per due casi d'uso. Il corso spiega perché il team utilizzerà AutoML, BigQuery ML o l'addestramento personalizzato per raggiungere i propri obiettivi.

Scopri di più

Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.

Scopri di più

Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.

Scopri di più

Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.

Scopri di più

Google Cloud Fundamentals: Core Infrastructure introduce concetti e terminologia importanti per lavorare con Google Cloud. Attraverso video e lab pratici, questo corso presenta e confronta molti dei servizi di computing e archiviazione di Google Cloud, insieme a importanti strumenti di gestione delle risorse e dei criteri.

Scopri di più