加入 登录

在 Google Cloud 控制台中运用您的技能

Yash chadda

成为会员时间:2024

钻石联赛

50228 积分
透過 Vertex AI 建構及部署機器學習解決方案 Earned Jun 12, 2025 EDT
AI 世界的安全防護簡介 Earned Jun 9, 2025 EDT
Gen AI Agents: Transform Your Organization Earned Jun 9, 2025 EDT
Gen AI Apps: Transform Your Work Earned Jun 9, 2025 EDT
Gen AI: Navigate the Landscape Earned Jun 9, 2025 EDT
Gen AI: Unlock Foundational Concepts Earned Jun 9, 2025 EDT
Gen AI: Beyond the Chatbot Earned Jun 9, 2025 EDT
Production Machine Learning Systems Earned Jun 6, 2025 EDT
開發人員的負責任 AI 技術:可解釋性與透明度 Earned Jun 6, 2025 EDT
開發人員的負責任 AI 技術:隱私權與安全性 Earned Jun 6, 2025 EDT
在 Google Cloud 打造生成式 AI 應用程式 Earned Jun 5, 2025 EDT
開發人員的負責任 AI 技術:公平性與偏誤 Earned Jun 5, 2025 EDT
Working with Notebooks in Vertex AI Earned Jun 5, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Jun 5, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Jun 4, 2025 EDT
Feature Engineering Earned Jun 3, 2025 EDT
Google Cloud 的 AI 和機器學習服務簡介 Earned Jun 2, 2025 EDT
機器學習運作 (MLOps) 與 Vertex AI:模型評估 Earned Jun 2, 2025 EDT
強化 Gemini 模型功能 Earned May 29, 2025 EDT
運用 Gemini 分析多模態資料並推論 Earned May 23, 2025 EDT
生成式 AI 適用的機器學習運作 (MLOps) Earned May 16, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned May 16, 2025 EDT
負責任的 AI 技術:透過 Google Cloud 採用 AI 開發原則 Earned May 15, 2025 EDT
在 Vertex AI 設計提示 Earned May 15, 2025 EDT
負責任的 AI 技術簡介 Earned May 14, 2025 EDT
大型語言模型簡介 Earned May 14, 2025 EDT
生成式 AI 簡介 Earned May 13, 2025 EDT
Google Cloud Essentials Earned May 13, 2025 EDT

完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。

了解详情

人工智慧 (AI) 帶來轉型可能,但全新資安挑戰也隨著出現。本課程介紹資料安全和保護的策略,可幫助相關領域的領導者,在企業內部安全地管理 AI。您可以瞭解如何建立框架,主動辨別和減輕 AI 特有的風險、保護機密資料、確實法規遵循,並打造堅韌的 AI 基礎架構。我們提供四個不同產業的案例,帶您探索如何實際應用這些策略。

了解详情

Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.

了解详情

Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google's gen AI applications, such as Gemini for Workspace and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.

了解详情

Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.

了解详情

Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.

了解详情

Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

本課程旨在說明 AI 的可解釋性和透明度概念、探討 AI 透明度對開發人員和工程師的重要性。課程中也會介紹實務方法和工具,有助於讓資料和 AI 模型透明且可解釋。

了解详情

本課程涵蓋「AI 隱私權」和「AI 安全性」這兩個重要主題。我們將介紹實用的方法和工具,協助您運用 Google Cloud 產品和開放原始碼工具,導入 AI 隱私權和安全性的建議做法。

了解详情

大型語言模型 (LLM) 誕生之後,生成式 AI 應用程式帶來的嶄新使用者體驗,可說是幾乎前所未有。身為應用程式開發人員,您要如何在 Google Cloud,運用生成式 AI 建立出色的互動式應用程式? 本課程將帶您瞭解生成式 AI 應用程式,以及如何使用提示設計和檢索增強生成 (RAG),透過 LLM 建構強大的應用程式。我們也會介紹可用於正式環境的生成式 AI 應用程式架構。您將建構採用 LLM 和 RAG 的對話應用程式。

了解详情

本課程旨在說明負責任 AI 技術的概念和 AI 開發原則,同時介紹各項技術,在實務上找出公平性和偏誤,減少 AI/機器學習做法上的偏誤。我們也將探討實用方法和工具,透過 Google Cloud 產品和開放原始碼工具,導入負責任 AI 技術的最佳做法。

了解详情

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

本課程針對評估生成式和預測式 AI 模型,向機器學習從業人員介紹相關的基礎工具、技術和最佳做法。模型評估是機器學習的重要領域,確保這類系統能在正式環境中提供可靠、準確且成效優異的結果。 學員將深入瞭解多種評估指標與方法,以及適用於不同模型類型和工作的應用方式。此外,也會特別介紹生成式 AI 模型帶來的獨特難題,並提供有效的應對策略。透過 Google Cloud Vertex AI 平台,學員將瞭解在模型挑選、最佳化和持續監控方面,該如何導入穩健的評估程序。

了解详情

完成強化 Gemini 模型功能技能徽章中階課程,即可證明自己具備下列技能:運用 Gemini 模型的進階功能 (包括生成及執行程式碼、建立基準、生成受控內容、建立合成資料等),打造更強大且精密的 AI 應用程式。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程和結業評量挑戰實驗室之後,即可取得技能徽章 並與他人分享。

了解详情

完成運用 Gemini 分析多模態資料並推論技能徽章中階課程,即可證明自己具備下列技能:使用 Gemini 2.0 Flash 分析文字、圖像、音訊 (以樂譜呈現) 和影片資料;以及依據這類複合型資訊,推導出結論及擷取洞察結果。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 這個課程和結業評量挑戰實驗室之後,即可取得技能徽章 並與他人分享。

了解详情

本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。

了解详情

完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

了解详情