Yash chadda
Member since 2024
Diamond League
50228 points
Member since 2024
Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models. This skill badge course is for professional Data Scientists and Machine Learning Engineers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google's gen AI applications, such as Gemini for Workspace and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
Bu kursta yapay zekanın yorumlanabilirliği ve şeffaflığı kavramlarıyla ilgili temel bilgiler sunulmaktadır. Ayrıca geliştiriciler ve mühendisler için yapay zeka sistemlerinde şeffaflığın önemi ele alınmaktadır. Kurs boyunca, veri ve yapay zeka modellerinde yorumlanabilirliğin ve şeffaflığın sağlanmasına yardımcı olacak pratik yöntemleri ve araçları tanıyacaksınız.
Bu kursta, yapay zekada gizlilik ve güvenlik konuları ele alınmaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynak araçları kullanarak yapay zekayla ilgili önerilen gizlilik ve güvenlik uygulamalarını benimsemenize yardımcı olacak pratik yöntemler ile araçları tanıyacaksınız.
Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.
Bu kursta, sorumlu yapay zeka kavramı ve yapay zeka ilkeleri tanıtılmaktadır. Kurs, adalet ve önyargıyı pratik şekilde tanımlama teknikleri ile yapay zeka/makine öğrenimi uygulamalarında önyargının azaltılması konularını ele almaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynaklı araçları kullanarak sorumlu yapay zekayla ilgili en iyi uygulamaları benimsemenize yardımcı olacak pratik yöntemler ve araçları tanıyacaksınız.
This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.
Complete the intermediate Enhance Gemini Model Capabilities skill badge to demonstrate skills in the following: leveraging advanced features of Gemini models, including code generation and execution, grounding, controlled content generation, and synthetic data creation, to build more powerful and sophisticated AI applications.
Complete the intermediate Analyze and Reason on Multimodal Data with Gemini skill badge to demonstrate skills in the following: using Gemini 2.0 Flash to analyze text, image, audio (represented as sheet music), and video data, and to reason about this combined information to draw conclusions and extract insights. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Bu kurs, MLOps ekiplerinin üretken yapay zeka modellerini dağıtırken ve yönetirken karşılaştığı zorlukların üstesinden gelmek için gereken bilgi ve araçları sağlamaktadır. Ayrıca yapay zeka ekiplerinin, MLOps süreçlerini kolaylaştırıp üretken yapay zeka projelerinde başarıya ulaşması için Vertex AI'ın nasıl yardımcı olduğunu öğrenmenizi amaçlamaktadır.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Kurumsal yapay zeka ve makine öğreniminin kullanımı artmaya devam ettikçe, bunu sorumlu bir şekilde oluşturmanın önemi de artıyor. Sorumlu yapay zeka hakkında konuşmanın, onu uygulamaya koymaktan çok daha kolay olabilmesi burada bir zorluk oluşturmaktadır. Kuruluşunuzda sorumlu yapay zekayı nasıl işlevsel hale getireceğinizi öğrenmekle ilgileniyorsanız, bu kurs tam size göre. Bu kurs, Google Cloud'un sorumlu yapay zeka yaklaşımını nasıl uyguladığını derinlemesine inceleyerek, kendi sorumlu yapay zeka stratejinizi oluşturmanız için size kapsamlı bir çerçeve sunuyor.
Vertex AI'da istem mühendisliği, görüntü analizi ve çok modlu üretken teknikler gibi becerileri göstermek için Vertex AI'da İstem Tasarımı beceri rozetini tamamlayın. Etkili istemlerin nasıl oluşturulacağını, üretken yapay zeka çıktılarına nasıl rehberlik edileceğini ve Gemini modellerinin gerçek dünyadaki pazarlama senaryolarına nasıl uygulanacağını keşfedin. Ein Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlığınızın tanınması amacıyla Google Cloud tarafından verilen özel bir dijital rozettir ve bilginizi etkileşimli, uygulamalı bir ortamda uygulama yeteneğinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti almak için bu beceri rozeti kursunu ve son değerlendirme yarışması laboratuvarını tamamlayın. Bu aktiviteyi tamamlayın ve bir rozet kazanın! Geliştirdiğiniz becerileri herkese göstererek bulut üstüne kariyerinizi geliştirin.
Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.
Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.
Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.