chadda Yash
メンバー加入日: 2024
ダイヤモンド リーグ
50228 ポイント
メンバー加入日: 2024
Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
AI は、革新的な技術である一方で、新たなセキュリティ上の課題を生み出す可能性も否定できません。このコースでは、セキュリティとデータ保護の責任者を対象に、組織内で AI を安全に管理するための戦略を説明します。AI 特有のリスクを事前に特定して軽減し、機密データを保護し、コンプライアンスを確保しながら、復元力の高い AI インフラストラクチャを構築するための枠組みについて学ぶ。4 つの業界のユースケースを通して、これらの戦略が実際の場面でどのように活用されているかを探る。
「生成 AI エージェント: 組織の変革」は、生成 AI リーダー学習プログラムの最後となる 5 番目のコースです。このコースでは、組織でカスタム生成 AI エージェントを使用して特定のビジネス課題に対処する方法を学習します。基本的な生成 AI エージェントを構築する実践演習を行うとともに、モデル、推論ループ、ツールなどのエージェントの構成要素について見ていきます。
「生成 AI アプリ: 働き方を変革する」は、生成 AI リーダー学習プログラムの 4 つ目のコースです。このコースでは、Gemini for Workspace や NotebookLM など、Google の生成 AI アプリケーションを紹介します。グラウンディング、検索拡張生成、効果的なプロンプトの作成、自動化されたワークフローの構築などのコンセプトについて学びます。
「生成 AI: 現在の状況を知る」は、生成 AI リーダー学習プログラムの 3 つ目のコースです。生成 AI は、私たちの働き方や、私たちを取り巻く世界との関わり方を変えています。リーダーは、実際のビジネス成果に結びつけるために、生成 AI の力をどのように活用できるでしょうか?このコースでは、生成 AI ソリューションの構築におけるさまざまなレイヤ、Google Cloud のサービス、ソリューションを選択する際に考慮すべき要素について学びます。
「生成 AI: 基本概念の理解」は、生成 AI リーダー学習プログラムの 2 つ目のコースです。このコースでは、AI、ML、生成 AI の違いを探り、さまざまなデータタイプが生成 AI によるビジネス課題への対処を可能にする仕組みを理解することで、生成 AI の基本概念を習得します。また、基盤モデルの限界に対処するための Google Cloud の戦略、および責任ある安全な AI の開発と導入における重要な課題に関するインサイトも得られます。
「生成 AI: chatbot を超えて」は、生成 AI リーダー学習プログラムの最初のコースで、前提条件はありません。このコースは、chatbot の基礎的な理解をさらに広げ、組織で実現できる生成 AI の真の可能性を把握することを目的としています。基盤モデルおよびプロンプト エンジニアリングなど、生成 AI の力を活用するうえで重要な概念も紹介します。また、このコースでは、組織において優れた生成 AI 戦略を策定する場合に検討するべき重要事項も見ていきます。
このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。
このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。
このコースでは、AI のプライバシーと安全性に関する重要なトピックを紹介します。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して AI のプライバシーと安全性の推奨プラクティスを実装するための実践的な方法とツールを検証します。
生成 AI アプリケーションは、大規模言語モデル(LLM)の発明以前にはほぼ不可能であった、新しいユーザー エクスペリエンスを生み出すことができます。アプリケーション デベロッパーが Google Cloud 上で生成 AI を活用し、魅力的で強力なアプリを構築するにはどうすればよいでしょうか? このコースでは、生成 AI アプリケーションについて学びます。また、プロンプト設計と検索拡張生成(RAG)を使用して、LLM を活用した強力なアプリケーションを構築する方法についても学びます。さらに、生成 AI アプリケーションで使用できるプロダクション レディなアーキテクチャについて学び、LLM と RAG ベースのチャット アプリケーションを構築します。
このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。
このコースは、Vertex AI Notebooks に関する入門コースです。Vertex AI Notebooks は Jupyter ノートブックをベースとした環境であり、データの準備からモデルのデプロイとモニタリングに至るまで ML のワークフロー全体をサポートする統合プラットフォームを提供します。このコースでは、(1)Vertex AI Notebooks の種類とそれぞれの機能、(2)Vertex AI Notebooks の作成と管理の方法について説明します。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。 受講者は、SDK レイヤで Vertex AI Feature Store のストリーミング取り込みを使用する実践的な演習を受けられます。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。
このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。
このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。
このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。
「Gemini モデルの機能を強化する」の中級スキルバッジを獲得すると、Gemini モデルの高度な機能(コードの生成と実行、グラウンディング、制御されたコンテンツの生成、合成データの作成など)を活用して、より強力で洗練された AI アプリケーションを構築するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。
「Gemini でマルチモーダル データを分析し、推論する」の中級スキルバッジを獲得すると、Gemini 2.0 Flash を使用してテキスト、画像、音声(楽譜として表現)、動画データを分析し、これらの情報の組み合わせで推論を行い、結論を導き出して、分析情報を抽出するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 また、インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。
このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。
このコースでは、PMLE(Professional Machine Learning Engineer)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握したうえで、また、試験への準備状況を把握して、個々の学習計画を作成します。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。