가입 로그인

Google Cloud 콘솔에서 기술 적용

Andre Ferreira

회원 가입일: 2023

Vertex AI Studio 소개 Earned 8월 4, 2025 EDT
AI 보안 소개 Earned 5월 22, 2025 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 5월 22, 2025 EDT
개발자를 위한 책임감 있는 AI: 개인 정보 보호 및 안전 Earned 5월 20, 2025 EDT
개발자를 위한 책임감 있는 AI: 해석 가능성 및 투명성 Earned 5월 20, 2025 EDT
개발자를 위한 책임감 있는 AI: 공정성 및 편향 Earned 5월 19, 2025 EDT
Vertex AI로 머신러닝 작업(MLOps): 모델 평가 Earned 5월 19, 2025 EDT
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 5월 16, 2025 EDT
엔드 투 엔드 SDLC를 위한 Gemini Earned 5월 14, 2025 EDT
애플리케이션 개발자를 위한 Gemini Earned 5월 14, 2025 EDT
Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 Earned 5월 12, 2025 EDT
Vertex AI의 Gemini API로 생성형 AI 살펴보기 Earned 5월 12, 2025 EDT
Google Cloud에서 Gemini 1.0 Pro와 애플리케이션 통합 Earned 5월 9, 2025 EDT
Google Cloud에서 생성형 AI를 사용한 웹사이트 현대화 Earned 5월 6, 2025 EDT
Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 Earned 5월 6, 2025 EDT
Google Cloud에서 생성형 AI 앱 만들기 Earned 5월 4, 2025 EDT
벡터 검색 및 임베딩 Earned 5월 2, 2025 EDT
Natural Language Processing on Google Cloud Earned 4월 30, 2025 EDT
Transformer 모델 및 BERT 모델 Earned 4월 22, 2025 EDT
인코더-디코더 아키텍처 Earned 4월 22, 2025 EDT
Vertex AI의 프롬프트 설계 Earned 4월 21, 2025 EDT
Google Cloud: Prompt Engineering Guide Earned 3월 26, 2025 EDT
책임감 있는 AI 소개 Earned 3월 26, 2025 EDT
대규모 언어 모델 소개 Earned 3월 26, 2025 EDT
생성형 AI 소개 Earned 3월 25, 2025 EDT
Google Cloud의 AI 및 머신러닝 소개 Earned 2월 7, 2025 EST
Mitigating Security Vulnerabilities on Google Cloud Earned 1월 17, 2025 EST
Security Best Practices in Google Cloud Earned 12월 19, 2024 EST
Managing Security in Google Cloud Earned 11월 21, 2024 EST
DEPRECATED Site Reliability Engineering: Measuring and Managing Reliability Earned 11월 13, 2024 EST
Logging and Monitoring in Google Cloud Earned 11월 11, 2024 EST
Google Cloud에서 Terraform으로 인프라 빌드 Earned 10월 25, 2024 EDT
유연한 Google Cloud 인프라: 확장 및 자동화 Earned 10월 17, 2024 EDT
DEPRECATED Exploring APIs Earned 10월 17, 2024 EDT
Compute Engine에서 부하 분산 구현 Earned 10월 15, 2024 EDT
Preparing for Your Associate Cloud Engineer Journey Earned 10월 15, 2024 EDT
Google Cloud 네트워크 개발 Earned 10월 10, 2024 EDT
Using the Cloud SDK Command Line Earned 10월 10, 2024 EDT
Google Cloud에서 Kubernetes 애플리케이션 배포하기 Earned 10월 7, 2024 EDT
Google Kubernetes Engine으로 설계하기: 기초 Earned 10월 3, 2024 EDT
Google Cloud에서 Cloud 보안 기본사항 구현하기 Earned 10월 1, 2024 EDT
필수 Google Cloud 인프라: 핵심 서비스 Earned 9월 26, 2024 EDT
안전한 Google Cloud 네트워크 빌드 Earned 9월 23, 2024 EDT
Networking in Google Cloud: Fundamentals Earned 9월 12, 2024 EDT
Google Cloud 앱 개발 환경 설정 Earned 9월 10, 2024 EDT
필수 Google Cloud 인프라: 기초 Earned 9월 4, 2024 EDT
GCP Essentials Earned 9월 2, 2024 EDT
Google Cloud 기초: 핵심 인프라 Earned 8월 28, 2024 EDT

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

인공지능(AI)은 혁신적인 가능성을 제공하지만 새로운 보안 문제의 원인이 되기도 합니다. 이 과정에서는 보안 및 데이터 보호 리더가 조직 내에서 AI를 안전하게 관리하는 데 필요한 전략을 살펴봅니다. AI 관련 위험을 사전에 식별 및 완화하고, 민감한 정보를 보호하며, 규정을 준수하고, 복원력 높은 AI 인프라를 빌드하는 프레임워크를 학습합니다. 이러한 전략이 실제 시나리오에서 어떻게 적용되는지 살펴보기 위해 4가지 산업별 사례를 선별했습니다.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

이 과정에서는 AI 개인 정보 보호 및 안전에 관한 중요한 주제를 소개합니다. Google Cloud 제품과 오픈소스 도구를 사용하여 AI 개인 정보 보호 및 안전 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 AI 해석 가능성과 투명성의 개념을 소개합니다. 개발자와 엔지니어에게 AI 투명성이 얼마나 중요한지를 설명합니다. 데이터와 AI 모델 모두에서 해석 가능성과 투명성을 구현하는 데 도움이 되는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 책임감 있는 AI라는 개념과 AI 원칙을 소개합니다. 공정성과 편향을 실질적으로 식별하고 AI/ML 실무에서 편향을 완화하는 기법을 알아봅니다. Google Cloud 제품과 오픈소스 도구를 사용하여 책임감 있는 AI 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정은 머신러닝 실무자에게 생성형 AI 모델과 예측형 AI 모델을 평가하는 데 필요한 도구, 기술, 권장사항을 제공합니다. 모델 평가는 프로덕션 단계의 ML 시스템이 안정적이고 정확하고 성능이 우수한 결과를 제공할 수 있게 하는 중요한 분야입니다. 강의 참가자는 다양한 평가 측정항목, 방법, 각각 다른 모델 유형과 작업에 적합한 애플리케이션에 대해 깊이 있게 이해할 수 있습니다. 이 과정에서는 생성형 AI 모델의 고유한 문제를 강조하고 이를 효과적으로 해결하기 위한 전략을 소개합니다. 강의 참가자는 Google Cloud의 Vertex AI Platform을 활용해 모델 선택, 최적화, 지속적인 모니터링을 위한 견고한 평가 프로세스를 구현하는 방법을 알아볼 수 있습니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 Google 제품 및 서비스를 사용해 애플리케이션을 개발, 테스트, 배포, 관리하는 데 어떤 도움이 되는지 알아봅니다. Gemini의 도움을 받아 웹 애플리케이션을 개발 및 빌드하고, 애플리케이션의 오류를 수정하고, 테스트를 개발하고, 데이터를 쿼리하는 방법을 배웁니다. 실무형 실습을 통해 Gemini로 소프트웨어 개발 수명 주기(SDLC)가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 공동작업 도구인 Gemini가 개발자의 애플리케이션 빌드에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 코드에 대한 설명을 얻고 Google Cloud 서비스를 추천받고 애플리케이션의 코드를 생성하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 애플리케이션 개발 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

중급 Vertex AI의 Gemini API로 생성형 AI 살펴보기 기술 배지 과정을 완료하여 텍스트를 생성하고, 향상된 콘텐츠 제작을 위해 이미지 및 동영상을 분석하고, Gemini API 내에서 함수 호출 기법을 적용하는 기술 역량을 입증하세요. 정교한 Gemini 기법을 활용하고, 멀티모달 콘텐츠 생성을 살펴보고, AI 기반 프로젝트의 기능을 확장하는 방법을 알아보세요.

자세히 알아보기

Google Cloud에서 Gemini 1.0 Pro 모델과 애플리케이션을 통합하는 방법에 대한 이 짧은 과정은 Gemini API 모델과 생성형 AI 모델을 살펴보는 데 도움이 됩니다. 이 과정에서는 코드에서 Gemini 1.0 Pro 모델과 Gemini 1.0 Pro Vision 모델에 액세스하는 방법을 알아봅니다. 앱의 텍스트, 이미지, 동영상 프롬프트로 모델의 기능을 테스트할 수 있습니다.

자세히 알아보기

생성형 AI로 사용자에게 더 나은 검색 경험을 제공하여 웹사이트의 탐색 경험을 향상합니다. 이 과정에서는 사용자가 웹사이트의 콘텐츠를 발견할 수 있도록 Vertex AI Search를 통해 생성형 검색 경험을 웹사이트 사용자에게 제공하는 방법을 알아봅니다. 웹사이트 편집자는 생성형 AI를 사용하여 제안을 통해 콘텐츠를 신속하고 효율적으로 번역하고 개선하는 방법을 배울 수 있습니다.

자세히 알아보기

중급 Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 기술 배지 과정을 완료하여 텍스트 생성, Python SDK와 Gemini API를 사용한 함수 호출 적용, Cloud Run으로 Streamlit 애플리케이션 배포 작업과 관련된 기술 역량을 입증하세요. 텍스트 생성을 위해 Gemini에 프롬프트를 입력하는 여러 가지 방법과 Cloud Shell을 사용해 Streamlit 애플리케이션을 테스트하고 반복하는 방법, Streamlit 애플리케이션을 Cloud Run에 배포된 Docker 컨테이너로 패키징하는 방법을 배울 수 있습니다.

자세히 알아보기

생성형 AI 애플리케이션은 대규모 언어 모델(LLM)이 발명되기 전에는 불가능에 가까웠던 새로운 사용자 경험을 만들 수 있습니다. 어떻게 하면 애플리케이션 개발자가 생성형 AI를 사용해 Google Cloud에서 강력한 대화형 앱을 빌드할 수 있을까요? 이 과정에서는 생성형 AI 애플리케이션에 대해 알아보고 프롬프트 설계 및 검색 증강 생성(RAG)을 사용해 LLM 기반의 강력한 애플리케이션을 빌드하는 방법을 학습합니다. 생성형 AI 애플리케이션에 사용할 수 있는 프로덕션 레디 아키텍처를 살펴보고 LLM 및 RAG 기반 채팅 애플리케이션을 빌드합니다.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요.

자세히 알아보기

Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기

In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.

자세히 알아보기

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.

자세히 알아보기

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.

자세히 알아보기

Service level indicators (SLIs) and service level objectives (SLOs) are fundamental tools for measuring and managing reliability. In this course, students learn approaches for devising appropriate SLIs and SLOs and managing reliability through the use of an error budget.

자세히 알아보기

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

자세히 알아보기

중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요.

자세히 알아보기

이 속성 주문형 과정에서는 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습이 결합된 이 과정을 통해 안전한 네트워크 상호 연결, 부하 분산, 자동 확장, 인프라 자동화, 관리형 서비스가 포함된 솔루션 요소를 살펴보고 배포할 수 있습니다.

자세히 알아보기

Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.

자세히 알아보기

입문 Compute Engine에서 부하 분산 구현 기술 배지 과정을 완료하여 gcloud 명령어 작성 및 Cloud Shell 사용, Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 HTTP 부하 분산기 구성에 관한 본인의 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 개인의 숙련도를 인정하기 위해 Google Cloud에서 단독 발급하는 디지털 배지로서 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트합니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

자세히 알아보기

Google Cloud 네트워크 개발 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 IAM 역할 탐색 및 프로젝트 액세스 권한 추가/삭제, VPC 네트워크 생성, Compute Engine VM 배포 및 모니터링, SQL 쿼리 작성, Compute Engine에서 VM 배포 및 모니터링, Kubernetes를 여러 배포 접근 방식과 함께 사용하여 애플리케이션을 배포하는 등의 다양한 애플리케이션 배포 및 모니터링 방법을 배울 수 있습니다.

자세히 알아보기

For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.

자세히 알아보기

중급 Google Cloud에서 Kubernetes 애플리케이션 배포하기 기술 배지 과정을 완료하여 Docker 컨테이너 이미지 구성 및 빌드, Google Kubernetes Engine(GKE) 클러스터 생성 및 관리, kubectl을 활용한 효율적인 클러스터 관리, 강력한 지속적 배포(CD) 관행으로 Kubernetes 애플리케이션 배포를 위한 기술을 갖추었음을 입증하세요.

자세히 알아보기

Google Kubernetes Engine으로 설계하기: 기초' 과정에서는 Google Cloud의 레이아웃 및 원리를 살펴본 후 소프트웨어 컨테이너를 생성 및 관리하는 방법과 Kubernetes 아키텍처에 대해 알아봅니다.

자세히 알아보기

중급 Google Cloud에서 Cloud 보안 기본사항 구현하기 기술 배지 과정을 완료하여 Identity and Access Management(IAM)로 역할 생성 및 할당, 서비스 계정 생성 및 관리, 가상 프라이빗 클라우드(VPC) 네트워크에서 비공개 연결 사용 설정, IAP(Identity-Aware Proxy)를 사용한 애플리케이션 액세스 제한, Cloud Key Management Service(KMS)를 사용한 키와 암호화된 데이터 관리, 비공개 Kubernetes 클러스터 생성과 관련된 기술 역량을 입증하세요.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 시스템, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. 또한 이 과정에서는 고객 제공 암호화 키, 보안 및 액세스 관리, 할당량 및 요금 청구, 리소스 모니터링 등 실용적인 솔루션을 배포하는 방법에 대해서도 설명합니다.

자세히 알아보기

안전한 Google Cloud 네트워크 빌드 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 애플리케이션을 빌드, 확장, 보호하는 데 필요한 다양한 네트워킹 관련 리소스에 대해 배울 수 있습니다.

자세히 알아보기

Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals.  This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques. 

자세히 알아보기

Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 가상 머신, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. Console과 Cloud Shell을 통해 Google Cloud를 사용하는 방법을 학습합니다. 또한 클라우드 설계자의 역할, 인프라 설계 접근 방식은 물론 Virtual Private Cloud(VPC), 프로젝트, 네트워크, 서브네트워크, IP 주소, 경로, 방화벽 규칙을 사용한 가상 네트워킹 구성에 대해 알아봅니다.

자세히 알아보기

가장 인기 있는 이 탐구 과정에서 Google Cloud를 처음으로 실습할 수 있습니다. Stackdriver 및 Kubernetes의 고급 개념으로 실습하여 VM 가동, 키 인프라 도구 구성과 같은 기본사항을 익혀 보세요.

자세히 알아보기

Google Cloud 기초: 핵심 인프라 과정은 Google Cloud 사용에 관한 중요한 개념 및 용어를 소개합니다. 이 과정에서는 동영상 및 실무형 실습을 통해 중요한 리소스 및 정책 관리 도구와 함께 Google Cloud의 다양한 컴퓨팅 및 스토리지 서비스를 살펴보고 비교합니다.

자세히 알아보기