Join Sign in

Apply your skills in Google Cloud console

Andre Ferreira

Member since 2023

Introduction to Vertex AI Studio Earned Aug 4, 2025 EDT
Introduction to Security in the World of AI Earned May 22, 2025 EDT
Responsible AI: Applying AI Principles with Google Cloud Earned May 22, 2025 EDT
Responsible AI for Developers: Privacy & Safety Earned May 20, 2025 EDT
Responsible AI for Developers: Interpretability & Transparency Earned May 20, 2025 EDT
Responsible AI for Developers: Fairness & Bias Earned May 19, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned May 19, 2025 EDT
Machine Learning Operations (MLOps) for Generative AI Earned May 16, 2025 EDT
Gemini for end-to-end SDLC Earned May 14, 2025 EDT
Gemini for Application Developers Earned May 14, 2025 EDT
Inspect Rich Documents with Gemini Multimodality and Multimodal RAG Earned May 12, 2025 EDT
Explore Generative AI with the Gemini API in Vertex AI Earned May 12, 2025 EDT
Integrating Applications with Gemini 1.0 Pro on Google Cloud Earned May 9, 2025 EDT
Website Modernization with Generative AI on Google Cloud Earned May 6, 2025 EDT
Develop Gen AI Apps with Gemini and Streamlit Earned May 6, 2025 EDT
Create Generative AI Apps on Google Cloud Earned May 4, 2025 EDT
Vector Search and Embeddings Earned May 2, 2025 EDT
Natural Language Processing on Google Cloud Earned Apr 30, 2025 EDT
Transformer Models and BERT Model Earned Apr 22, 2025 EDT
Encoder-Decoder Architecture Earned Apr 22, 2025 EDT
Prompt Design in Vertex AI Earned Apr 21, 2025 EDT
Google Cloud: Prompt Engineering Guide Earned Mar 26, 2025 EDT
Introduction to Responsible AI Earned Mar 26, 2025 EDT
Introduction to Large Language Models Earned Mar 26, 2025 EDT
Introduction to Generative AI Earned Mar 25, 2025 EDT
Introduction to AI and Machine Learning on Google Cloud Earned Feb 7, 2025 EST
Mitigating Security Vulnerabilities on Google Cloud Earned Jan 17, 2025 EST
Security Best Practices in Google Cloud Earned Dec 19, 2024 EST
Managing Security in Google Cloud Earned Nov 21, 2024 EST
DEPRECATED Site Reliability Engineering: Measuring and Managing Reliability Earned Nov 13, 2024 EST
Logging and Monitoring in Google Cloud Earned Nov 11, 2024 EST
Build Infrastructure with Terraform on Google Cloud Earned Oct 25, 2024 EDT
Elastic Google Cloud Infrastructure: Scaling and Automation Earned Oct 17, 2024 EDT
DEPRECATED Exploring APIs Earned Oct 17, 2024 EDT
Implementing Cloud Load Balancing for Compute Engine Earned Oct 15, 2024 EDT
Preparing for Your Associate Cloud Engineer Journey Earned Oct 15, 2024 EDT
Develop Your Google Cloud Network Earned Oct 10, 2024 EDT
Using the Cloud SDK Command Line Earned Oct 10, 2024 EDT
Deploy Kubernetes Applications on Google Cloud Earned Oct 7, 2024 EDT
Architecting with Google Kubernetes Engine: Foundations Earned Oct 3, 2024 EDT
Implement Cloud Security Fundamentals on Google Cloud Earned Oct 1, 2024 EDT
Essential Google Cloud Infrastructure: Core Services Earned Sep 26, 2024 EDT
Build a Secure Google Cloud Network Earned Sep 23, 2024 EDT
Networking in Google Cloud: Fundamentals Earned Sep 12, 2024 EDT
Set Up an App Dev Environment on Google Cloud Earned Sep 10, 2024 EDT
Essential Google Cloud Infrastructure: Foundation Earned Sep 4, 2024 EDT
Google Cloud Essentials Earned Sep 2, 2024 EDT
Google Cloud Fundamentals: Core Infrastructure Earned Aug 28, 2024 EDT

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

This course introduces important topics of AI privacy and safety. It explores practical methods and tools to implement AI privacy and safety recommended practices through the use of Google Cloud products and open-source tools.

Learn more

This course introduces concepts of AI interpretability and transparency. It discusses the importance of AI transparency for developers and engineers. It explores practical methods and tools to help achieve interpretability and transparency in both data and AI models.

Learn more

This course introduces concepts of responsible AI and AI principles. It covers techniques to practically identify fairness and bias and mitigate bias in AI/ML practices. It explores practical methods and tools to implement Responsible AI best practices using Google Cloud products and open source tools.

Learn more

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Learn more

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Learn more

In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you use Google products and services to develop, test, deploy, and manage applications. With help from Gemini, you learn how to develop and build a web application, fix errors in the application, develop tests, and query data. Using a hands-on lab, you experience how Gemini improves the software development lifecycle (SDLC). Duet AI was renamed to Gemini, our next-generation model.

Learn more

In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.

Learn more

Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.

Learn more

Complete the intermediate Explore Generative AI with the Gemini API in Vertex AI skill badge to demonstrate skills in text generation, image and video analysis for enhanced content creation, and applying function calling techniques within the Gemini API. Discover how to leverage sophisticated Gemini techniques, explore multimodal content generation, and expand the capabilities of your AI-powered projects.

Learn more

This short course on integrating applications with Gemini 1.0 Pro models on Google Cloud helps you discover the Gemini API and its generative AI models. The course teaches you how to access the Gemini 1.0 Pro and Gemini 1.0 Pro Vision models from code. It lets you test the capabilities of the models with text, image, and video prompts from an app.

Learn more

Enhance the navigation experience of your website by using generative AI to provide a better search experience for your users. In this course, you learn how to use Vertex AI Search to provide your website users a generative search experience enabling them to discover content offered by the website. As a website editor, you also learn how to use generative AI to quickly and efficiently translate and improve the content using suggestions.

Learn more

Complete the intermediate Develop Gen AI Apps with Gemini and Streamlit skill badge course to demonstrate skills in text generation, applying function calls with the Python SDK and Gemini API, and deploying a Streamlit application with Cloud Run. In this course, you learn Gemini prompting, test Streamlit apps in Cloud Shell, and deploy them as Docker containers in Cloud Run.

Learn more

Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.

Learn more

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

Learn more

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Learn more

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Learn more

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Learn more

Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios.

Learn more

Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more

In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.

Learn more

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.

Learn more

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.

Learn more

Service level indicators (SLIs) and service level objectives (SLOs) are fundamental tools for measuring and managing reliability. In this course, students learn approaches for devising appropriate SLIs and SLOs and managing reliability through the use of an error budget.

Learn more

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Learn more

Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.

Learn more

Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.

Learn more

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

Learn more

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Learn more

Earn a skill badge by completing the Develop your Google Cloud Network skill badge course, where you learn multiple ways to deploy and monitor applications including how to: explore IAM roles and add/remove project access, create VPC networks, deploy and monitor Compute Engine VMs, write SQL queries, deploy and monitor VMs in Compute Engine, and deploy applications using Kubernetes with multiple deployment approaches.

Learn more

For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.

Learn more

Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.

Learn more

In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.

Learn more

Complete the intermediate Implement Cloud Security Fundamentals on Google Cloud skill badge course to demonstrate skills in the following: creating and assigning roles with Identity and Access Management (IAM); creating and managing service accounts; enabling private connectivity across virtual private cloud (VPC) networks; restricting application access using Identity-Aware Proxy; managing keys and encrypted data using Cloud Key Management Service (KMS); and creating a private Kubernetes cluster.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.

Learn more

Earn a skill badge by completing the Build a Secure Google Cloud Network skill badge course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud.

Learn more

Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals.  This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques. 

Learn more

Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud skill badge course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub.

Learn more

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.

Learn more

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Learn more

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Learn more