Vanes Angelo
Jest członkiem od 2020
Liga diamentowa
20510 pkt.
Jest członkiem od 2020
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
This short course on integrating applications with Gemini 1.0 Pro models on Google Cloud helps you discover the Gemini API and its generative AI models. The course teaches you how to access the Gemini 1.0 Pro and Gemini 1.0 Pro Vision models from code. It lets you test the capabilities of the models with text, image, and video prompts from an app.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Big data, uczenie maszynowe i sztuczna inteligencja to najpopularniejsze tematy współczesnej informatyki, jednak to dość wyspecjalizowane dziedziny i trudno znaleźć materiały wprowadzające do nich. Na szczęście Google Cloud udostępnia przyjazne dla użytkownika usługi w tych obszarach, a dzięki temu kursowi dla początkujących możesz poznać podstawy narzędzi takich jak BigQuery, Cloud Speech API i Video Intelligence.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.
Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.
Earn a skill badge by completing the Cloud Architecture: Design, Implement, and Manage to demonstrate skills in the following: deploy a publicly accessible website using Apache web servers, configure a Compute Engine VM using startup scripts, configure secure RDP using a Windows Bastion host and firewall rules, build and deploy a Docker image to a Kubernetes cluster and then update it, and create a CloudSQL instance and import a MySQL database. This skill badge is a great resource for understanding topics that will appear in the Google Cloud Certified Professional Cloud Architect certification exam.
Aby zdobyć odznakę umiejętności, ukończ szkolenie Budowanie bezpiecznej sieci Google Cloud, w trakcie którego poznasz różne związane z siecią zasoby do budowania, skalowania i zabezpieczania aplikacji w Google Cloud.
Aby zdobyć odznakę umiejętności, ukończ szkolenie Budowanie sieci w Google Cloud, w trakcie którego poznasz różne sposoby wdrażania i monitorowania aplikacji i dowiesz się, jak: przeglądać role uprawnień, dodawać/usuwać dostęp do projektu, tworzyć sieci VPC, wdrażać i monitorować maszyny wirtualne Compute Engine, pisać zapytania SQL oraz wdrażać aplikacje przy użyciu różnych metod w Kubernetes.
W ramach tego kursu poznasz 4 dostępne architektury stron Google Cloud, dzięki czemu Twoja strona będzie dostępna i skalowalna. Jeśli ukończysz ten kurs wraz z Challenge Lab na końcu, otrzymasz cyfrową plakietkę Google Cloud. Challenge Lab nie zawiera dokładnych instrukcji – wymaga opracowania rozwiązań z minimalną pomocą, przez co sprawdza umiejętności użytkownika w zakresie technologii Google Cloud. Ten kurs jest oparty na serii materiałów wideo Get Cooking in Cloud.
Ukończ szkolenie wprowadzające Uzyskiwanie statystyk z danych BigQuery, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: pisanie zapytań SQL, tworzenie zapytań dotyczących tabel publicznych, wczytywanie przykładowych danych w BigQuery, naprawianie typowych błędów składniowych przy użyciu walidatora zapytań w BigQuery oraz tworzenie raportów w Looker Studio przez tworzenie połączenia z danymi BigQuery.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
It’s no secret that machine learning is one of the fastest growing fields in tech, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this introductory course, you will get hands-on practice with machine learning as it applies to language processing by taking labs that will enable you to extract entities from text, and perform sentiment and syntactic analysis as well as use the Speech to Text API for transcription.
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
Jeśli dopiero zaczynasz programować w chmurze i szukasz praktycznych ćwiczeń wykraczających poza treści z kursu „Podstawy Google Cloud”, ten kurs jest dla Ciebie. Zdobędziesz praktyczne doświadczenie dzięki modułom poświęconym Cloud Storage i innym kluczowym usługom aplikacji, takim jak Monitoring i Cloud Functions. Zdobędziesz cenne umiejętności, które przydadzą się w każdym przedsięwzięciu z zastosowaniem Google Cloud.