가입 로그인

Google Cloud 콘솔에서 기술 적용

Dmytro Kainara

회원 가입일: 2021

실버 리그

21515포인트
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 2월 17, 2024 EST
Store, Process, and Manage Data on Google Cloud - Command Line Earned 11월 1, 2023 EDT
Google Cloud에서 데이터 저장, 처리, 관리하기 - 콘솔 Earned 10월 31, 2023 EDT
Monitor and Manage Google Cloud Resources Earned 10월 31, 2023 EDT
Dataplex 시작하기 Earned 10월 31, 2023 EDT
Get Started with Looker Earned 10월 31, 2023 EDT
Perform Predictive Data Analysis in BigQuery Earned 10월 31, 2023 EDT
Share Data Using Google Data Cloud Earned 10월 31, 2023 EDT
Google Cloud 앱 개발 환경 설정 Earned 10월 30, 2023 EDT
BigQuery로 데이터 웨어하우스 빌드 Earned 10월 22, 2023 EDT
Google Cloud의 AI 및 머신러닝 소개 Earned 10월 21, 2023 EDT
BigQuery ML로 ML 모델 만들기 Earned 10월 18, 2023 EDT
BigQuery 데이터에서 인사이트 도출 Earned 10월 9, 2023 EDT
Launching into Machine Learning - 한국어 Earned 10월 1, 2023 EDT
Create and Manage Bigtable Instances Earned 9월 27, 2023 EDT
Creating New BigQuery Datasets and Visualizing Insights Earned 9월 24, 2023 EDT
Exploring and Preparing your Data with BigQuery Earned 9월 23, 2023 EDT
Google Cloud 기반 데이터 분석 입문 Earned 9월 20, 2023 EDT
GCP Essentials Earned 9월 19, 2023 EDT

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

Cloud Storage, Cloud Functions, and Cloud Pub/Sub are all Google Cloud Platform services that can be used to store, process, and manage data. All three services can be used together to create a variety of data-driven applications. In this skill badge you will use Cloud Storage to store images, Cloud Functions to process the images, and Cloud Pub/Sub to send the images to another application.

자세히 알아보기

Cloud Storage, Cloud Functions, Cloud Pub/Sub는 모두 데이터를 저장, 처리, 관리하는 데 사용할 수 있는 Google Cloud Platform 서비스입니다. 세 가지 서비스를 모두 활용하여 다양한 데이터 기반 애플리케이션을 만들 수 있습니다. 이 기술 배지 과정에서는 Cloud Storage를 사용하여 이미지를 저장하고, Cloud Functions를 사용하여 이미지를 처리하고, Cloud Pub/Sub를 사용하여 이미지를 다른 애플리케이션으로 보냅니다.

자세히 알아보기

This challenge lab tests your skills and knowledge from the labs in the Monitor and Manage Google Cloud Resources quest. You should be familiar with the content of labs before attempting this lab.

자세히 알아보기

초급 Dataplex 시작하기 기술 배지 과정을 완료하여 Dataplex 애셋 생성, 관점 유형 생성, Dataplex의 항목에 관점 적용과 관련된 기술 역량을 입증하세요.

자세히 알아보기

Earn a skill badge by completing the Get Started with Looker quest, where you learn how to analyze, visualize, and curate data using Looker Studio and Looker. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

자세히 알아보기

Earn a skill badge by completing the Share Data Using Google Data Cloud course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

중급 BigQuery로 데이터 웨어하우스 빌드 기술 배지를 완료하여 데이터를 조인하여 새 테이블 만들기, 조인 관련 문제 해결, 합집합으로 데이터 추가, 날짜로 파티션을 나눈 테이블 만들기, BigQuery에서 JSON, 배열, 구조체 작업하기와 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기

중급 BigQuery ML로 ML 모델 만들기 기술 배지 과정을 완료하면 BigQuery ML로 머신러닝 모델을 만들고 평가하여 데이터 예측을 수행하는 기술 역량을 입증할 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.

자세히 알아보기

This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.

자세히 알아보기

In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.

자세히 알아보기

초급 과정에서는 Google Cloud에서 데이터 분석 워크플로와 데이터를 탐색, 분석, 시각화하여 이해관계자와 결과물을 공유하는 데 활용할 수 있는 도구에 대해 학습합니다. 이 과정에서는 우수사례를 실무형 실습, 강의, 퀴즈/데모와 함께 활용해 원시 데이터 세트에서 데이터를 정리하여 효과적인 시각화 및 대시보드를 만드는 방법을 설명합니다. 이미 데이터를 활용하고 있고 Google Cloud를 효과적으로 활용하는 방법을 알고 싶거나 경력을 발전시키고 싶은 학습자라면 이 과정으로 학습을 시작해 보세요. 업무에서 데이터 분석을 수행하거나 활용하는 거의 모든 학습자에게 도움이 될 수 있습니다.

자세히 알아보기

가장 인기 있는 이 탐구 과정에서 Google Cloud를 처음으로 실습할 수 있습니다. Stackdriver 및 Kubernetes의 고급 개념으로 실습하여 VM 가동, 키 인프라 도구 구성과 같은 기본사항을 익혀 보세요.

자세히 알아보기