Zack Hendrix
Mitglied seit 2023
Mitglied seit 2023
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Sie möchten Machine-Learning-Modelle mithilfe von SQL in Minuten statt in Stunden erstellen? BigQuery ML sorgt für eine breite Nutzung von Machine Learning, indem es Datenanalysten ermöglicht, ML-Modelle zu erstellen, zu trainieren und zu bewerten sowie mit den Modellen und vorhandenen SQL-Tools und ‑Fähigkeiten Vorhersagen zu treffen. In dieser Lab-Reihe experimentieren Sie mit verschiedenen Modelltypen und erfahren, was für ein gutes Modell notwendig ist.
Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In diesem Kurs wird eine Lösung für Retrieval-Augmented Generation (RAG) in BigQuery vorgestellt, die KI-Halluzinationen minimiert. Sie lernen einen RAG-Workflow kennen, der die Erstellung von Einbettungen, die Suche in einem Vektorraum und die Generierung verbesserter Antworten umfasst. Darüber hinaus werden die konzeptionellen Gründe für diese Schritte und ihre praktische Umsetzung mit BigQuery erklärt. Am Ende des Kurses werden Sie in der Lage sein, eine RAG-Pipeline mithilfe von BigQuery und generativen KI-Modellen wie Gemini zu erstellen und Modelle einzubetten, um KI-Halluzinationen zu verhindern.
In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.
Mit auf generativer KI basierenden Anwendungen, kurz GenAI-Anwendungen, werden Nutzerinteraktionen möglich, die es vor Large Language Models (LLMs) kaum gab. Wie können Sie als Anwendungsentwickler mit generativer KI interaktive, leistungsstarke Anwendungen in Google Cloud erstellen? In diesem Kurs lernen Sie etwas über Anwendungen, die auf generativer KI basieren, und erfahren, wie Sie Prompt-Design und Retrieval-Augmented Generation (RAG) nutzen können, um mit LLMs leistungsstarke Anwendungen zu entwickeln. Wir stellen Ihnen eine produktionsreife Architektur für auf generativer KI basierende Anwendungen vor und Sie erstellen eine Chat-Anwendung auf der Basis von LLMs und RAG.
Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.