가입 로그인

Google Cloud 콘솔에서 기술 적용

Huyen Do

회원 가입일: 2020

브론즈 리그

4000포인트
BigQuery 데이터에서 인사이트 도출 Earned 8월 20, 2020 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned 8월 20, 2020 EDT
DEPRECATED Explore Machine Learning Models with Explainable AI Earned 8월 19, 2020 EDT
Scientific Data Processing Earned 8월 19, 2020 EDT
DEPRECATED BigQuery for Data Warehousing Earned 8월 18, 2020 EDT
머신러닝용 BigQuery Earned 8월 16, 2020 EDT
[DEPRECATED] Build Interactive Apps with Google Assistant Earned 8월 16, 2020 EDT
DEPRECATED BigQuery for Data Analysis Earned 8월 15, 2020 EDT
[DEPRECATED] OK Google: Build Interactive Apps with Google Assistant Earned 8월 14, 2020 EDT
Machine Learning APIs Earned 8월 13, 2020 EDT
Intro to ML: Image Processing Earned 8월 12, 2020 EDT
Google Developer Essentials Earned 8월 9, 2020 EDT
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 8월 8, 2020 EDT
머신러닝 소개: 언어 처리 Earned 8월 8, 2020 EDT
기준: 데이터, ML, AI Earned 8월 5, 2020 EDT
Compute Engine에서 부하 분산 구현 Earned 8월 2, 2020 EDT

초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

자세히 알아보기

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

자세히 알아보기

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

자세히 알아보기

Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

자세히 알아보기

SQL만으로 몇 시간이 아닌 몇 분 만에 머신러닝 모델을 빌드하고 싶으신가요? BigQuery ML은 데이터 분석가가 기존 SQL 도구와 기술을 사용하여 머신러닝 모델을 만들고, 학습시키고, 평가하고, 예측할 수 있게 하여 머신러닝을 범용화합니다. 이 실습 시리즈에서는 다양한 모델 유형을 실험하고 좋은 모델을 만드는 요소를 알아봅니다.

자세히 알아보기

Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.

자세히 알아보기

With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.

자세히 알아보기

It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

자세히 알아보기

Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.

자세히 알아보기

This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

모두 알다시피 머신러닝은 빠르게 성장 중인 기술 분야 중 하나입니다. Google Cloud Platform(GCP)은 이러한 발전을 촉진하는 데 중요한 역할을 했습니다. GCP는 다양한 API를 통해 거의 모든 머신러닝 작업에 적합한 도구를 제공합니다. 이 초급 과정에서는 실무형 실습을 통해 머신러닝을 언어 처리에 적용하는 방법을 알아봅니다. 실습에 참여하여 텍스트에서 항목을 추출하고 감정 및 구문 분석을 수행하며 스크립트 작성에 Speech-to-Text API를 사용해 보세요.

자세히 알아보기

빅데이터, 머신러닝, 인공지능은 오늘날 인기 있는 컴퓨팅 관련 주제이지만 매우 전문화된 분야이기 때문에 초급용 자료를 구하기 어렵습니다. 다행히도 Google Cloud는 이러한 분야에서 사용자 친화적인 서비스를 제공하며 초급 과정을 통해 학습자에게 BigQuery, Cloud Speech API, Video Intelligence와 같은 도구를 사용해 시작할 기회를 제공합니다.

자세히 알아보기

입문 Compute Engine에서 부하 분산 구현 기술 배지 과정을 완료하여 gcloud 명령어 작성 및 Cloud Shell 사용, Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 HTTP 부하 분산기 구성에 관한 본인의 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 개인의 숙련도를 인정하기 위해 Google Cloud에서 단독 발급하는 디지털 배지로서 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트합니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기