Gabung Login

Terapkan keterampilan Anda di Konsol Google Cloud

Juan Rubén Marrero Vizcaíno

Menjadi anggota sejak 2019

Build and Deploy a Generative AI solution using a RAG framework Earned Jul 16, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned Jul 3, 2024 EDT
Text Prompt Engineering Techniques Earned Jun 21, 2024 EDT
Desain Perintah dalam Vertex AI Earned Jun 17, 2024 EDT
Pengantar Responsible AI Earned Jun 17, 2024 EDT
Pengantar Model Bahasa Besar Earned Jun 17, 2024 EDT
Pengantar AI Generatif Earned Jun 17, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Feb 21, 2024 EST
Machine Learning Operations (MLOps): Getting Started Earned Feb 21, 2024 EST
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Feb 19, 2024 EST
Feature Engineering Earned Jan 29, 2024 EST
Pengantar AI dan Machine Learning di Google Cloud Earned Jan 27, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Jun 27, 2023 EDT
Building Resilient Streaming Systems on Google Cloud Platform Earned Jun 27, 2023 EDT
Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML Earned Jun 26, 2023 EDT
Menyiapkan Data untuk ML API di Google Cloud Earned Jun 26, 2023 EDT
Building Batch Data Pipelines on Google Cloud Earned Jun 13, 2023 EDT
Menyiapkan Jaringan Google Cloud Earned Jun 5, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Mei 31, 2023 EDT
Mengimplementasikan Load Balancing di Compute Engine Earned Mei 30, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned Mei 19, 2023 EDT
Launching into Machine Learning Earned Mei 18, 2023 EDT
How Google Does Machine Learning Earned Mei 15, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Apr 26, 2023 EDT
Architecting with Google Kubernetes Engine: Production Earned Jun 23, 2022 EDT
Architecting with Google Kubernetes Engine: Workloads Earned Jun 2, 2022 EDT
Architecting with Google Kubernetes Engine: Foundations Earned Mei 12, 2022 EDT
Getting Started With Application Development Earned Mar 8, 2022 EST
Arsitektur Cloud: Merancang, Mengimplementasikan, dan Mengelola Earned Jun 22, 2020 EDT
Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud Earned Jun 19, 2020 EDT

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

Pelajari lebih lanjut

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Pelajari lebih lanjut

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Desain Perintah dalam Vertex AI untuk menunjukkan keterampilan Anda dalam hal berikut: rekayasa perintah, analisis gambar, dan teknik generatif multimodal, dalam Vertex AI. Pelajari cara membuat perintah yang efektif, memandu output AI generatif, dan menerapkan model Gemini dalam skenario pemasaran di dunia nyata. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan kepada jaringan Anda.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Pelajari lebih lanjut

Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.

Pelajari lebih lanjut

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Pelajari lebih lanjut

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Jaringan Google Cloud, untuk mempelajari cara menjalankan tugas-tugas networking dasar di Google Cloud Platform, yakni membuat jaringan kustom, menambahkan aturan firewall subnet, lalu membuat VM dan menguji latensi saat VM berkomunikasi satu sama lain. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge digital yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Pelajari lebih lanjut

Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Pelajari lebih lanjut

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Pelajari lebih lanjut

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Pelajari lebih lanjut

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut

In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.

Pelajari lebih lanjut

In "Architecting with Google Kubernetes Engine- Workloads", you'll embark on a comprehensive journey into cloud-native application development. Throughout the learning experience, you'll explore Kubernetes operations, deployment management, GKE networking, and persistent storage. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine- Production course.

Pelajari lebih lanjut

In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.

Pelajari lebih lanjut

In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate managed services from Google Cloud. Through a combination of presentations, demos, and hands-on labs, participants learn how to apply best practices for application development and use the appropriate Google Cloud storage services for object storage, relational data, caching, and analytics. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer. This is the first course of the Developing Applications with Google Cloud series. After completing this course, enroll in the Securing and Integrating Components of your Application course.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Arsitektur Cloud: Merancang, Mengimplementasikan, dan Mengelola untuk menunjukkan keahlian Anda dalam hal berikut: men-deploy situs yang dapat diakses secara publik menggunakan server web Apache, mengonfigurasi VM Compute Engine menggunakan skrip startup, mengonfigurasi RDP yang aman menggunakan Bastion host Windows dan aturan firewall, membangun dan men-deploy image Docker ke cluster Kubernetes serta kemudian mengupdatenya, membuat instance CloudSQL, dan mengimpor database MySQL. Kursus badge keahlian ini merupakan referensi yang bagus untuk memahami topik yang akan muncul di ujian sertifikasi Professional Cloud Architect Tersertifikasi Google Cloud. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagian pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursu…

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut