Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Juan Rubén Marrero Vizcaíno

Date d'abonnement : 2019

Build and Deploy a Generative AI solution using a RAG framework Earned juil. 16, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned juil. 3, 2024 EDT
Text Prompt Engineering Techniques Earned juin 21, 2024 EDT
Conception de requêtes dans Vertex AI Earned juin 17, 2024 EDT
Introduction à l'IA responsable Earned juin 17, 2024 EDT
Présentation des grands modèles de langage Earned juin 17, 2024 EDT
Présentation de l'IA générative Earned juin 17, 2024 EDT
Machine Learning Operations (MLOps) avec Vertex AI : gérer les caractéristiques Earned fév. 21, 2024 EST
Machine Learning Operations (MLOps) : premiers pas Earned fév. 21, 2024 EST
Créer, entraîner et déployer des modèles de ML avec Keras sur Google Cloud Earned fév. 19, 2024 EST
Ingénierie des caractéristiques Earned jan. 29, 2024 EST
Présentation de l'IA et du machine learning sur Google Cloud Earned jan. 27, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Français Earned juin 27, 2023 EDT
Building Resilient Streaming Systems on Google Cloud Platform Earned juin 27, 2023 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned juin 26, 2023 EDT
Préparer des données pour les API de ML sur Google Cloud Earned juin 26, 2023 EDT
Créer des pipelines de données en batch sur Google Cloud Earned juin 13, 2023 EDT
Configurer un réseau Google Cloud Earned juin 5, 2023 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned mai 31, 2023 EDT
Implémenter l'équilibrage de charge sur Compute Engine Earned mai 30, 2023 EDT
Se préparer à devenir Professional Data Engineer Earned mai 19, 2023 EDT
Launching into Machine Learning - Français Earned mai 18, 2023 EDT
How Google Does Machine Learning - Français Earned mai 15, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Français Earned avr. 26, 2023 EDT
Architecting with Google Kubernetes Engine: Production - Français Earned juin 23, 2022 EDT
Architecting with Google Kubernetes Engine: Workloads - Français Earned juin 2, 2022 EDT
Architecting with Google Kubernetes Engine: Foundations - Français Earned mai 12, 2022 EDT
Getting Started with Application Development - Français Earned mars 8, 2022 EST
Architecture cloud : concevoir, implémenter et gérer Earned juin 22, 2020 EDT
Configurer un environnement de développement d'applications sur Google Cloud Earned juin 19, 2020 EDT

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

En savoir plus

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

En savoir plus

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

En savoir plus

Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.

En savoir plus

Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.

En savoir plus

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.

En savoir plus

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Suivez le cours Configurer un réseau Google Cloud et obtenez un badge de compétence. Vous allez apprendre à effectuer des tâches élémentaires de gestion de réseaux sur Google Cloud Platform : créer un réseau personnalisé, ajouter des règles de pare-feu de sous-réseau, puis créer des VM et tester la latence lorsqu'elles communiquent entre elles. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.

En savoir plus

Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.

En savoir plus

Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus

Dans ce cours, vous découvrirez la sécurité dans Kubernetes et Google Kubernetes Engine (GKE) (journaux et surveillance), ainsi que l'utilisation des services de stockage et de bases de données gérés Google Cloud à partir de GKE. Il s'agit du deuxième cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous aux cours "Reliable Google Cloud Infrastructure: Design and Process" ou "Hybrid Cloud Infrastructure Foundations with Anthos".

En savoir plus

Le cours "Architecting with Google Kubernetes Engine: Workloads" vous fera découvrir de manière très complète le développement d'applications cloud natives. Tout au long de votre formation, vous étudierez les opérations Kubernetes, la gestion des déploiements, la mise en réseau GKE et le stockage persistant. Il s'agit du premier cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous au cours "Architecting with Google Kubernetes Engine: Production".

En savoir plus

Dans le cours "Architecting with Google Kubernetes Engine: Foundations," nous allons vous présenter l'organisation et les principes de Google Cloud. Nous vous apprendrons ensuite à créer et gérer des conteneurs de logiciels, puis nous vous ferons découvrir l'architecture de Kubernetes. Il s'agit du premier cours de la série "Architecting with Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous au cours "Architecting with Google Kubernetes Engine: Workloads".

En savoir plus

Dans ce cours, les développeurs d'applications apprennent à concevoir et développer des applications cloud natives qui s'intègrent parfaitement aux services gérés de Google Cloud. À travers un ensemble de présentations, de démonstrations et d'ateliers pratiques, les participants apprendront à appliquer les bonnes pratiques de développement d'applications et à utiliser les services Google Cloud Storage appropriés pour le stockage d'objets, les données relationnelles, la mise en cache et les données analytiques. Il est obligatoire de terminer une version de chaque atelier. Chaque atelier est disponible en Node.js. Dans la plupart des cas, les mêmes ateliers sont aussi disponibles en Python ou en Java. Vous pouvez terminer chaque atelier dans la langue que vous voulez. Il s'agit du premier cours de la série "Developing Applications with Google Cloud". Une fois que vous l'aurez terminé, inscrivez-vous au cours "Securing and Integrating Components of your Application".

En savoir plus

Terminez le cours Architecture cloud : concevoir, implémenter et gérer pour recevoir un badge démontrant vos compétences dans les domaines suivants : le déploiement d'un site Web accessible publiquement à l'aide de serveurs Web Apache, la configuration d'une VM Compute Engine à l'aide de scripts de démarrage, la configuration d'une session RDP sécurisée à l'aide de règles de pare-feu et d'un hôte bastion Windows, la création d'une image Docker, son déploiement dans un cluster Kubernetes et sa mise à jour, et la création d'une instance Cloud SQL et l'importation d'une base de données MySQL. Le cours lié à ce badge de compétence est une excellente ressource pour comprendre les sujets qui seront abordés dans l'examen de certification Google Cloud Certified Professional Cloud Architect. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connais…

En savoir plus

Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus