En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
En este curso, aprenderá de los ingenieros y capacitadores de AA que trabajan en el desarrollo de vanguardia de las canalizaciones de AA en Google Cloud. En los primeros módulos, se abordará TensorFlow Extended (o TFX), la plataforma de aprendizaje automático de producción de Google basada en TensorFlow para la administración de canalizaciones y metadatos de AA. Aprenderá sobre los componentes y la organización de las canalizaciones con TFX. También aprenderá cómo automatizar su canalización mediante la integración y la implementación continuas, y cómo administrar ML Metadata. Luego, cambiaremos el enfoque para analizar cómo podemos automatizar y volver a usar las canalizaciones de AA en múltiples frameworks de AA, como TensorFlow, PyTorch, scikit-learn y XGBoost. Además, aprenderá a usar Cloud Composer, otra herramienta de Google Cloud, para organizar sus canalizaciones de entrenamiento continuo. Por último, aprenderá a usar MLflow para administrar el ciclo de vida completo del aprend…